Skip to main content

Power Take-Off Devices for Wave Energy Converters

  • Chapter
  • First Online:
Ocean Wave Energy Systems

Part of the book series: Ocean Engineering & Oceanography ((OEO,volume 14))

  • 1130 Accesses

Abstract

In a Wave Energy Converter (WEC), the Power Take-off (PTO) mechanism does the energy conversion through a series of mechanical and electrical systems. The PTO system plays a major role in defining the WEC system's structural dynamics. Since the PTO system directly affects the efficiency of power conversion, it has a significant role to play in the annual energy production of the WEC system. This emphasizes the importance of selecting an appropriate PTO system for any WEC based on the working conditions and other related parameters. In this chapter, different types of PTO systems developed over the past few decades are discussed along with their corresponding advantages and shortcomings. On reading this chapter, the reader will get acquainted with different types of PTO mechanisms in existence and also gain an insight on when to use what type of PTO.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pillai, I. R., & Banerjee, R. (2009). Renewable energy in India: Status and potential. Energy, 34(8), 970–980. https://doi.org/10.1016/j.energy.2008.10.016

    Article  Google Scholar 

  2. Kumar, A., Kumar, K., Kaushik, N., Sharma, S., & Mishra, S. (2010). Renewable energy in India: Current status and future potentials. Renewable and Sustainable Energy Reviews, 14(8), 2434–2442. https://doi.org/10.1016/j.rser.2010.04.003

    Article  Google Scholar 

  3. Budar, K., & Falnes, J. (1975). A resonant point absorber of ocean-wave power. Nature, 256(5517), 478–479. https://doi.org/10.1038/256478a0

    Article  Google Scholar 

  4. Raghunathan, S. (1995). The wells air turbine for wave energy conversion. Progress in Aerospace Sciences, 31(4), 335–386. https://doi.org/10.1016/0376-0421(95)00001-F

    Article  Google Scholar 

  5. Drew, B., Plummer, A. R., & Sahinkaya, M. N. (2009). A review of wave energy converter technology. 223, 887–902. https://doi.org/10.1243/09576509JPE782.

  6. Pecher, A., Jens Peter, K. (Eds.). (2017). Handbook of ocean wave energy (Vol. 7). Springer. https://doi.org/10.1007/978-3-319-39889-1.

  7. Rosa-santos, P., & Taveira-pinto, F. (2015). CECO wave energy converter : Experimental proof of concept. Journal of Renewable Sustainable Energy, 061704. https://doi.org/10.1063/1.4938179.

  8. Karayaka, H. B., Mahlke, H., Bogucki, D., Mehrubeoglu, M., Texas, A., Christi, M. U. (2011). A rotational wave energy conversion system development and validation with real ocean wave data. In IEEE Power Energy Society General Meeting, (pp. 5–11). IEEE. https://doi.org/10.1109/PES.2011.6038932.

  9. Sjolte, J., Tjensvoll, G., & Molinas, M. (2013). Power collection from wave energy farms. Applied Sciences, 3, 420–436. https://doi.org/10.3390/app3020420

    Article  Google Scholar 

  10. Liang, C., Ai, J., & Zuo, L. (2015). Design, fabrication, simulation and testing of an ocean wave energy converter with mechanical motion rectifier. Ocean Engineering, 136, 190–200. https://doi.org/10.1016/j.oceaneng.2017.03.024.

  11. Chandrasekaran, S., & Harender. (2012). Power generation using mechanical wave energy converter. The International Journal of Ocean and Climate Systems, 3(1), 57–70. https://doi.org/10.1260/1759-3131.3.1.57.

  12. Masuda, Y., Yamazaki, T., Outa, Y., & McCormick, M. E. (1988). The backward bend duct buoy-an improved floating type wave power device. In Proceedings of OCEANS ’88 “A Partnership of Marine Interests (pp. 1067–1072). https://doi.org/10.1109/oceans.1988.23663.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdus Samad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vijayasankar, V., Das, T.K., Halder, P., Samad, A. (2022). Power Take-Off Devices for Wave Energy Converters. In: Samad, A., Sannasiraj, S., Sundar, V., Halder, P. (eds) Ocean Wave Energy Systems. Ocean Engineering & Oceanography, vol 14. Springer, Cham. https://doi.org/10.1007/978-3-030-78716-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-78716-5_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-78715-8

  • Online ISBN: 978-3-030-78716-5

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics