Skip to main content

Efficient Model Monitoring for Quality Control in Cardiac Image Segmentation

  • Conference paper
  • First Online:
Functional Imaging and Modeling of the Heart (FIMH 2021)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12738))

Abstract

Deep learning methods have reached state-of-the-art performance in cardiac image segmentation. Currently, the main bottleneck towards their effective translation into clinics requires assuring continuous high model performance and segmentation results. In this work, we present a novel learning framework to monitor the performance of heart segmentation models in the absence of ground truth. Formulated as an anomaly detection problem, the monitoring framework allows deriving surrogate quality measures for a segmentation and allows flagging suspicious results. We propose two different types of quality measures, a global score and a pixel-wise map. We demonstrate their use by reproducing the final rankings of a cardiac segmentation challenge in the absence of ground truth. Results show that our framework is accurate, fast, and scalable, confirming it is a viable option for quality control monitoring in clinical practice and large population studies.

This work was supported through funding from the Monaco Government.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/robustml-eurecom/quality_control_CMR.

References

  1. Audibert, J., Michiardi, P., Guyard, F., Marti, S., Zuluaga, M.A.: USAD: unsupervised anomaly detection on multivariate time series. In: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 3395–3404 (2020)

    Google Scholar 

  2. Bai, W., et al.: Automated cardiovascular magnetic resonance image analysis with fully convolutional networks. J. Cardiovasc. Magn. Reson. 20(1), 65 (2018)

    Article  Google Scholar 

  3. Baumgartner, C.F., Koch, L.M., Pollefeys, M., Konukoglu, E.: An exploration of 2D and 3D deep learning techniques for cardiac MR image segmentation. In: Pop, M., et al. (eds.) STACOM 2017. LNCS, vol. 10663, pp. 111–119. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75541-0_12

    Chapter  Google Scholar 

  4. Bergmann, P., Löwe, S., Fauser, M., Sattlegger, D., Steger, C.: Improving unsupervised defect segmentation by applying structural similarity to autoencoders. In: 14th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications, pp. 372–380 (2019)

    Google Scholar 

  5. Bernard, O., et al.: Deep learning techniques for automatic MRI cardiac multi-structures segmentation and diagnosis: is the problem solved? IEEE Trans. Med. Imaging 37(11), 2514–2525 (2018)

    Article  Google Scholar 

  6. Isensee, F., Jaeger, P.F., Full, P.M., Wolf, I., Engelhardt, S., Maier-Hein, K.H.: Automatic cardiac disease assessment on cine-MRI via time-series segmentation and domain specific features. In: Pop, M., et al. (eds.) STACOM 2017. LNCS, vol. 10663, pp. 120–129. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75541-0_13

    Chapter  Google Scholar 

  7. Khened, M., Alex, V., Krishnamurthi, G.: Densely connected fully convolutional network for short-axis cardiac cine MR image segmentation and heart diagnosis using random forest. In: Pop, M., et al. (eds.) STACOM 2017. LNCS, vol. 10663, pp. 140–151. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75541-0_15

    Chapter  Google Scholar 

  8. Kohlberger, T., Singh, V., Alvino, C., Bahlmann, C., Grady, L.: Evaluating segmentation error without ground truth. In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.) MICCAI 2012, Part I. LNCS, vol. 7510, pp. 528–536. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33415-3_65

    Chapter  Google Scholar 

  9. Oktay, O., et al.: Anatomically constrained neural networks (ACNNs): application to cardiac image enhancement and segmentation. IEEE Trans. Med. Imaging 37(2), 384–395 (2017)

    Google Scholar 

  10. Painchaud, N., Skandarani, Y., Judge, T., Bernard, O., Lalande, A., Jodoin, P.M.: Cardiac segmentation with strong anatomical guarantees. IEEE Trans. Med. Imaging 39(11), 3703–3713 (2020)

    Article  Google Scholar 

  11. Puyol-Antón, E., et al.: Automated quantification of myocardial tissue characteristics from native t1 mapping using neural networks with uncertainty-based quality-control. J. Cardiovasc. Magn. Reson. 22(1), 1–15 (2020)

    Article  Google Scholar 

  12. Robinson, R., et al.: Real-time prediction of segmentation quality. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018, Part IV. LNCS, vol. 11073, pp. 578–585. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00937-3_66

    Chapter  Google Scholar 

  13. Robinson, R., et al.: Automated quality control in image segmentation: application to the UK biobank cardiovascular magnetic resonance imaging study. J. Cardiovasc. Magn. Reson. 21(1), 1–14 (2019)

    Article  Google Scholar 

  14. Ruijsink, B., et al.: Fully automated, quality-controlled cardiac analysis from CMR. JACC Cardiovasc. Imaging 13(3), 684–695 (2020)

    Article  Google Scholar 

  15. Sculley, D., et al.: Hidden technical debt in machine learning systems. Adv. Neural Inf. Process. Syst. 28, 2503–2511 (2015)

    Google Scholar 

  16. Sudre, C.H., Li, W., Vercauteren, T., Ourselin, S., Jorge Cardoso, M.: Generalised dice overlap as a deep learning loss function for highly unbalanced segmentations. In: Cardoso, M.J., et al. (eds.) DLMIA/ML-CDS -2017. LNCS, vol. 10553, pp. 240–248. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67558-9_28

    Chapter  Google Scholar 

  17. Grinias, E., Tziritas, G.: Fast fully-automatic cardiac segmentation in MRI using MRF model optimization, substructures tracking and B-spline smoothing. In: Pop, M., et al. (eds.) STACOM 2017. LNCS, vol. 10663, pp. 91–100. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75541-0_10

    Chapter  Google Scholar 

  18. Valindria, V.V., et al.: Reverse classification accuracy: predicting segmentation performance in the absence of ground truth. IEEE Trans. Med. Imaging 36(8), 1597–1606 (2017)

    Article  Google Scholar 

  19. Yang, X., Bian, C., Yu, L., Ni, D., Heng, P.-A.: Class-balanced deep neural network for automatic ventricular structure segmentation. In: Pop, M., et al. (eds.) STACOM 2017. LNCS, vol. 10663, pp. 152–160. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75541-0_16

    Chapter  Google Scholar 

  20. Yue, Q., Luo, X., Ye, Q., Xu, L., Zhuang, X.: Cardiac segmentation from LGE MRI using deep neural network incorporating shape and spatial priors. In: Shen, D., et al. (eds.) MICCAI 2019, Part II. LNCS, vol. 11765, pp. 559–567. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32245-8_62

    Chapter  Google Scholar 

  21. Zuluaga, M.A., Burgos, N., Mendelson, A.F., Taylor, A.M., Ourselin, S.: Voxelwise atlas rating for computer assisted diagnosis: application to congenital heart diseases of the great arteries. Med. Image Anal. 26(1), 185–194 (2015)

    Article  Google Scholar 

  22. Zuluaga, M.A., Cardoso, M.J., Modat, M., Ourselin, S.: Multi-atlas propagation whole heart segmentation from MRI and CTA using a local normalised correlation coefficient criterion. In: Ourselin, S., Rueckert, D., Smith, N. (eds.) FIMH 2013. LNCS, vol. 7945, pp. 174–181. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38899-6_21

    Chapter  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Christian Baumgartner, Elios Grinias, Jelmer M. Wolterink, and Clement Zotti for their help in the reproduction of the ACDC Challenge rankings by sharing their code or results and, overall, through their valuable advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria A. Zuluaga .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Galati, F., Zuluaga, M.A. (2021). Efficient Model Monitoring for Quality Control in Cardiac Image Segmentation. In: Ennis, D.B., Perotti, L.E., Wang, V.Y. (eds) Functional Imaging and Modeling of the Heart. FIMH 2021. Lecture Notes in Computer Science(), vol 12738. Springer, Cham. https://doi.org/10.1007/978-3-030-78710-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-78710-3_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-78709-7

  • Online ISBN: 978-3-030-78710-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics