Skip to main content

Population-Based Personalization of Geometric Models of Myocardial Infarction

  • Conference paper
  • First Online:
Functional Imaging and Modeling of the Heart (FIMH 2021)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12738))

Abstract

We propose a strategy to perform population-based personalization of a model, to overcome the limits of case-based personalization for generating virtual populations from models that include randomness. We formulate the problem as matching the synthetic and real populations by minimizing the Kullback-Leibler divergence between their distributions. As an analytical formulation of the models is complex or even impossible, the personalization is addressed by a gradient-free method: the CMA-ES algorithm, whose relevance was demonstrated for the case-based personalization of complex biomechanical cardiac models. The algorithm iteratively adapts the covariance matrix which in our problem encodes the distribution of the synthetic data.

We demonstrate the feasibility of this approach on two simple geometrical models of myocardial infarction, in 2D, to better focus on the relevance of the personalization process. Our strategy is able to reproduce the distribution of 2D myocardial infarcts from the segmented late Gadolinium images of 123 subjects with acute myocardial infarction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Connolly, A.J., Bishop, M.J.: Computational representations of myocardial infarct scars and implications for arrhythmogenesis. Clin. Med. Insights Cardiol. 10, 27–40 (2016)

    Google Scholar 

  2. Kingma, D.P., Welling, M.: Auto-encoding variational Bayes. arXiv (2014)

    Google Scholar 

  3. Kerckhoffs, R.C., McCulloch, A.D., Omens, J.H., et al.: Effects of biventricular pacing and scar size in a computational model of the failing heart with left bundle branch block. Med. Image Anal. 13, 362–369 (2009). https://doi.org/10.1016/j.media.2008.06.013

    Article  Google Scholar 

  4. Duchateau, N., De Craene, M., Allain, P., et al.: Infarct localization from myocardial deformation: prediction and uncertainty quantification by regression from a low-dimensional space. IEEE Trans. Med. Imaging 35, 2340–2352 (2016). https://doi.org/10.1109/TMI.2016.2562181

    Article  Google Scholar 

  5. Leong, C.N., Lim, E., Andriyana, A., et al.: The role of infarct transmural extent in infarct extension: a computational study. Int. J. Numer. Method Biomed. Eng. 33, e02794 (2017). https://doi.org/10.1002/cnm.2794

    Article  Google Scholar 

  6. Reimer, K.A., Lowe, J.E., Rasmussen, M.M., et al.: The wavefront phenomenon of ischemic cell death. 1. Myocardial infarct size vs duration of coronary occlusion in dogs. Circulation 56, 786–794 (1977). https://doi.org/10.1161/01.cir.56.5.786

    Article  Google Scholar 

  7. Pashaei, A., Hoogendoorn, C., Sebastián, R., Romero, D., Cámara, O., Frangi, A.F.: Effect of scar development on fast electrophysiological models of the human heart: in-silico study on atlas-based virtual populations. In: Metaxas, D.N., Axel, L. (eds.) FIMH 2011. LNCS, vol. 6666, pp. 427–436. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21028-0_54

    Chapter  Google Scholar 

  8. Rumindo, G.K., Duchateau, N., Croisille, P., Ohayon, J., Clarysse, P.: Strain-based parameters for infarct localization: evaluation via a learning algorithm on a synthetic database of pathological hearts. In: Pop, M., Wright, G.A. (eds.) FIMH 2017. LNCS, vol. 10263, pp. 106–114. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59448-4_11

    Chapter  Google Scholar 

  9. Belle, L., Motreff, P., Mangin, L., et al.: Comparison of immediate with delayed stenting using the minimalist immediate mechanical intervention approach in acute ST-segment-elevation myocardial infarction: the MIMI study. Circ. Cardiovasc. Interv. 9, e003388 (2016). https://doi.org/10.1161/CIRCINTERVENTIONS.115.003388

    Article  Google Scholar 

  10. Hansen, N., Ostermeier, A.: Adapting arbitrary normal mutation distributions in evolution strategies: the covariance matrix adaptation. In: Proceedings ICEC, pp. 312–317 (1996). https://doi.org/10.1109/ICEC.1996.542381

  11. Molléro, R., Pennec, X., Delingette, H., Garny, A., Ayache, N., Sermesant, M.: Multifidelity-CMA: a multifidelity approach for efficient personalisation of 3D cardiac electromechanical models. Biomech. Model. Mechanobiol 17(1), 285–300 (2017). https://doi.org/10.1007/s10237-017-0960-0

    Article  Google Scholar 

  12. Duchateau, N., De Craene, M., Sitges, M., Caselles, V.: Adaptation of multiscale function extension to inexact matching: application to the mapping of individuals to a learnt manifold. In: Nielsen, F., Barbaresco, F. (eds.) GSI 2013. LNCS, vol. 8085, pp. 578–586. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40020-9_64

    Chapter  MATH  Google Scholar 

  13. Gretton, A., Borgwardt, K.M., Rasch, M.J., et al.: A kernel two-sample test. J. Mach. Learn. Res. 13, 723–73 (2012)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support from the French ANR (LABEX PRIMES of Univ. Lyon [ANR-11-LABX-0063] within the program “Investissements d’Avenir” [ANR-11-IDEX-0007], the JCJC project “MIC-MAC” [ANR-19-CE45-0005]), and the Fédération Francaise de Cardiologie (“MI-MIX” project, Allocation René Foudon). They are also grateful to P Croisille and M Viallon (CREATIS, CHU Saint Etienne) for providing the imaging data for the MIMI population, and M Di Folco (CREATIS) for the preliminary exploration of the data alignment and simulation tools.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Duchateau .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mom, K., Clarysse, P., Duchateau, N. (2021). Population-Based Personalization of Geometric Models of Myocardial Infarction. In: Ennis, D.B., Perotti, L.E., Wang, V.Y. (eds) Functional Imaging and Modeling of the Heart. FIMH 2021. Lecture Notes in Computer Science(), vol 12738. Springer, Cham. https://doi.org/10.1007/978-3-030-78710-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-78710-3_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-78709-7

  • Online ISBN: 978-3-030-78710-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics