Skip to main content

Enhancing Personalization by Integrating Top-Down and Bottom-Up Approaches to Learner Modeling

  • Conference paper
  • First Online:
Adaptive Instructional Systems. Adaptation Strategies and Methods (HCII 2021)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12793))

Included in the following conference series:

Abstract

Learner models are representations of the learner’s knowledge, skills and other attributes used by Adaptive Instructional Systems (AISs) to personalize their interactions with the learners (e.g., by implementing adaptive feedback, and recommending tasks/activities). Top-down and bottom-up approaches to learner modeling provide various affordances and challenges in terms of the need for interpretable learner models, the amount of data available, the complexity of the model, and the amount of human effort needed to implement and validate learner models. Research shows that hybrid approaches involving both top-down and bottom-up approaches are needed to effectively deal with the challenges of learner modeling in AISs. This paper describes several learner modeling approaches for integrating top-down and bottom-up approaches to gather additional evidence for supporting assessment claims and implementing personalization approaches. We elaborate on several learner modeling issues, including (a) evidence identification and aggregation in assessment systems; (b) making sense of process data aimed at supporting assessment claims related to learner cognition; and (c) approaches for improving interpretability and explainability of student models with some implications for validity and fairness of AISs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abyaa, A., Khalidi Idrissi, M., Bennani, S.: Learner modelling: systematic review of the literature from the last 5 years. Educ. Tech. Research Dev. 67(5), 1105–1143 (2019). https://doi.org/10.1007/s11423-018-09644-1

    Article  Google Scholar 

  2. Almond, R.G., Zapata-Rivera, J.-D.: Bayesian Networks. In: von Davier, M., Lee, Y.-S. (eds.) Handbook of diagnostic classification models. MEMA, pp. 81–106. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-05584-4_4

    Chapter  Google Scholar 

  3. Anderson, J.R.: How can the human mind occur in the physical universe? Oxford University Press, New York (2007). https://doi.org/10.1093/acprof:oso/9780195324259.001.0001

  4. Anderson, J.R., Corbett, A.T., Koedinger, K.R., Pelletier, R.: Cognitive tutors: lessons learned. J. Learn. Sci. 4, 167–207 (1995)

    Article  Google Scholar 

  5. Anderson, J.R., Lebiere, C.J.: The Atomic Components of Thought. Erlbaum, Mahwah (1998)

    Google Scholar 

  6. Arslan, B., Jiang, Y., Keehner, M., Gong, T., Katz, I.R., Yan, F.: The effect of drag-and-drop item features on test-taker performance and response strategies. Educ. Measur. Issues Pract. 39, 96–106 (2020)

    Article  Google Scholar 

  7. Bauer, M., Zapata-Rivera, D.: Cognitive foundations of automated scoring. In: Yan, D., Rupp, A.A., Foltz, P.W. (eds.) Handbook of Automated Scoring: Theory into Practice, pp. 13–28. Taylor and Francis Group, New York (2020)

    Chapter  Google Scholar 

  8. Bejar, I.I.: Threats to score meaning in automated scoring. In: Ercikan, K., Pellegrino, J.W. (eds.) Validation of Score Meaning for the Next Generation of Assessments, pp. 75–84. Routledge, New York (2017)

    Chapter  Google Scholar 

  9. Bodily, R., et al.: Open learner models and learning analytics dashboards: a systematic review. In: Proceedings of the 8th International Conference on Learning Analytics and Knowledge, pp. 41–50 (2018)

    Google Scholar 

  10. Brown, J.S., Burton, R.: Diagnostic models for procedural bugs in basic mathematical skills. Cognitive Sci. 2, 155–192 (1978)

    Article  Google Scholar 

  11. Brown, J.S., et al.: Steps towards a theoretical foundation for complex, knowledge-based CAI. Bolt, Beranek and Newman, Cambridge (1975)

    Google Scholar 

  12. Brusilovsky, P., Karagiannidis, C., Sampson, D.: Layered evaluation of adaptive learning systems. Int. J. Continuing Eng. Educ. Lifelong Learn. 14(4–5), 402–421 (2004)

    Article  Google Scholar 

  13. Bull, S., Brna, P., Pain, H.: Extending the scope of the student model. User Model. User-Adap. Inter. 5, 45–65 (1995)

    Article  Google Scholar 

  14. Bull, S., Kay, J.: SMILI☺: a framework for interfaces to learning data in open learner models, learning analytics and related fields. Int. J. Artif. Intell. Educ. 26(1), 293–331 (2016)

    Article  Google Scholar 

  15. Carr, B., Goldstein, I.: Overlays: a theory of modeling for computer-aided instruction, Technical Report, AI Lab Memo 406. MIT (1977)

    Google Scholar 

  16. Chen, H., Tan, E., Lee, Y., Praharaj, S., Specht, M., Zhao, G.: Developing AI into explanatory supporting models: An explanation-visualized deep learning prototype. In: The International Conference of Learning Science (ICLS) (2020)

    Google Scholar 

  17. Chrysafiadi, K., Virvou, M.: Student modeling approaches: a literature review for the last decade. Expert Syst. Appl. 40(11), 4715–4729 (2013)

    Article  Google Scholar 

  18. Conati, C., Porayska-Pomsta, K., Mavrikis, M.: AI in education needs interpretable machine learning: lessons from open learner modelling. Arxiv. http://arxiv.org/abs/1807.00154 (2018)

  19. Conati, C., Gertner, A., VanLehn, K.: Using Bayesian networks to manage uncertainly in student modeling. User Model. User-Adap. Inter. 12(4), 371–417 (2002)

    Article  MATH  Google Scholar 

  20. Confalonieri, R., Coba, L., Wagner, B., Besold, T.R.: A historical perspective of explainable artificial intelligence. WIREs Data Min. Knowl. Disc. 11, e1391 (2021). https://doi.org/10.1002/widm.1391

    Article  Google Scholar 

  21. Corbett, A.T., Anderson, J.R.: Knowledge tracing: modeling the acquisition of procedural knowledge. User Model. User-Adap. Inter. 4, 253–278 (1995)

    Article  Google Scholar 

  22. D’Mello, S., Graesser, A.: Dynamics of affective states during complex learning. Learn. Instr. 22(2), 145–157 (2012)

    Article  Google Scholar 

  23. Durlach, P.J., Ray, J.M.: Designing adaptive instructional environments: insights from empirical evidence. Technical Report 1297. U. S. Army Research Institute for the Behavioral Social Sciences, Arlington, VA (2011)

    Google Scholar 

  24. Falmagne, J.C., Koppen, M., Villano, M., Doignon, J.P., Johannesen, L.: Introduction to knowledge spaces: how to build, test, and search them. Psychol. Rev. 97(2), 201–224 (1990)

    Article  Google Scholar 

  25. Falmagne, J.C., Albert, D., Doble, C., Eppstein, D., Hu, X. (ed.): Knowledge Spaces: Applications in Education. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-35329-1

  26. Forsyth, C.M., Andrews-Todd, J., Steinberg, J.: Are you really a team player? Profiles of collaborative problem solvers in an online environment. In: Rafferty, A.N., Whitehill, J., Cavalli-Sforza, V., Romero, C. (Eds.). Proceedings of the 13th International Conference on Educational Data Mining (EDM 2020), pp. 403–408 (2020)

    Google Scholar 

  27. Geden, M., Emerson, A., Carpenter, D., Rowe, J., Azevedo, R., Lester, J.: Predictive student modeling in game-based learning environments with word embedding representations of reflection. Int. J. Artif. Intell. Educ. (2020). https://doi.org/10.1007/s40593-020-00220-4

    Article  Google Scholar 

  28. Gisolfi, A., Dattolo, A., Balzano, W.: A fuzzy approach to student modeling. Comput. Educ. 19(4), 329–334 (1992)

    Article  Google Scholar 

  29. Graesser, A.: Emotions are the experiential glue of learning environments in the 21st century. Learn. Instr. 70, 101212 (2020)

    Article  Google Scholar 

  30. Greer, J., McCalla, G. (eds.): Student Models: The Key to Individualized Educational Systems. Springer, New York (1994)

    Google Scholar 

  31. Grubišić, A., Stankov, S., Žitko, B.: Stereotype student model for an adaptive e-learning system. Int. J. Comput. Electr. Autom. Control Inf. Eng. 7(4), 440–447 (2013)

    Google Scholar 

  32. Gunning, D.: “Explainable artificial intelligence (XAI)”. Defense Advanced Research Projects Agency (DARPA) (2017)

    Google Scholar 

  33. Guzmán, E., Conejo, R.: Measuring misconceptions through item response theory. In: International Conference on Artificial Intelligence in Education, pp. 608–611 (2015)

    Google Scholar 

  34. Hambleton, R.K., Swaminathan, H., Rogers, H.J.: Measurement Methods for the Social Sciences Series, Vol. 2. Fundamentals of Item Response Theory. Sage Publications, Inc. (1991)

    Google Scholar 

  35. Johnson, W., Soloway, E.: Intention-based diagnosis of programming errors. Paper presented at the AAAI (1984)

    Google Scholar 

  36. Käser, T., Klingler, S., Schwing, A.G., Gross, M.: Dynamic Bayesian networks for student modeling. IEEE Trans. Learn. Technol. 10(4), 450–462 (2017). https://doi.org/10.1109/TLT.2017.2689017

    Article  Google Scholar 

  37. Katz, I.R., LaMar, M.M., Spain, R., Zapata-Rivera, D., Baird, J., Greiff, S.: Validity issues and concerns for technology-based performance assessments. In: Sottilare, R., Graesser, A., Hu, X., Goodwin, G. (Eds.) Design Recommendations for Intelligent Tutoring Systems: vol. 5 - Assessment Methods. U.S. Army Research Laboratory, Orlando (2017). ISBN 978–0–9893923–9–6. 209–224

    Google Scholar 

  38. Kay, J.: Stereotypes, student models and scrutability. In: International Conference on Intelligent Tutoring Systems, pp. 19–30 (2000)

    Google Scholar 

  39. Kay, J., Zapata-Rivera, D., Conati, C.: The GIFT of scrutable learner models: why and how. In: Sinatra, R.A.M., Graesser, A.C., Hu, X., Goldberg, B., Hampton, A.J. (Eds.) Design Recommendations for Intelligent Tutoring Systems: vol. 8, pp. 25–40. – Data Visualization. U.S. Army CCDC - Soldier Center, Orlando (2020)

    Google Scholar 

  40. Kerr, D., Andrews, J.J., Mislevy, R.J.: The in-task assessment framework for behavioral data. Handbook of Cognition and Assessment, pp. 472–507 (2016)

    Google Scholar 

  41. Khajah, M., Lindsey, R.V., Mozer, M.C.: How deep is knowledge tracing? In: Proceedings of Educational Data Mining, pp. 94–101 (2016)

    Google Scholar 

  42. Koedinger, K.R., McLaughlin, E.A., Stamper, J.C.: Automated student model improvement. In: Yacef, K., Zaïane, O., Hershkovitz, H., Yudelson, M., Stamper, J. (Eds.) Proceedings of the 5th International Conference on Educational Data Mining, Chania, Greece, pp. 17–24 (2012)

    Google Scholar 

  43. Koedinger, K.R., Stamper, J.C., McLaughlin, E.A., Nixon, T.: Using data-driven discovery of better student models to improve student learning. In: Proceedings of the 16th International Conference on Artificial Intelligence in Education, pp. 421–430 (2013)

    Google Scholar 

  44. Lallé, S., Conati, C.: A data-driven student model to provide adaptive support during video watching across MOOCs. In: Bittencourt, I.I., Cukurova, M., Muldner, K., Luckin, R., Millán, E. (eds.) AIED 2020. LNCS (LNAI), vol. 12163, pp. 282–295. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-52237-7_23

    Chapter  Google Scholar 

  45. LaMar, M.M.: Markov decision process measurement model. Psychometrika 83(1), 67–88 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  46. Lee, M., Wagenmakers, E.: Bayesian Cognitive Modeling: A Practical Course. Cambridge University Press, Cambridge (2014). https://doi.org/10.1017/CBO9781139087759

  47. Lehman, B., Zapata-Rivera, D.: Student emotions in conversation-based assessments. IEEE Trans. Learn. Technol. 11(1), 1–13 (2018)

    Article  Google Scholar 

  48. Levy, R., Mislevy, R.J.: Bayesian Psychometric Modeling. CRC Press, Boca Raton (2016)

    MATH  Google Scholar 

  49. Lin, C.F., Yeh, Y.C., Hung, Y.H., Chang, R.I.: Data mining for providing a personalized learning path in creativity: an application of decision trees. Comput. Educ. 68, 199–210 (2013)

    Article  Google Scholar 

  50. Lord, F.M., Novick, M.R.: Statistical Theories of Mental Test Scores. Addison-Welsley Publishing Company, Reading (1968)

    Google Scholar 

  51. Loukina, A., Madnani, N., Zechner, K.: The many dimensions of algorithmic fairness in educational applications. In: Proceedings of the Workshop on Innovative Use of NLP for Building Educational Applications, Florence, Italy, pp. 1–10 (2019)

    Google Scholar 

  52. MacLellan, C.J., Koedinger, K.R.: Domain-general tutor authoring with apprentice learner models. Int. J. Artif. Intell. Educ. (2020). https://doi.org/10.1007/s40593-020-00214-2

  53. Min, W., et al.: DeepStealth: game-based learning stealth assessment with deep neural networks. IEEE Trans. Learn. Technol. 13(2), 312–325 (2020)

    Article  Google Scholar 

  54. Mitrovic, A., Martin, B., Suraweera, P.: Intelligent tutors for all: constraint-based modeling methodology, systems and authoring. IEEE Intell. Syst. 22, 38–45 (2007)

    Article  Google Scholar 

  55. Mislevy, R.J.: Four metaphors we need to understand assessment. Commissioned paper for The Gordon Commission on the Future of Assessment in Education (2012). Educational Testing Service, Princeton, NJ. www.ets.org/Media/Research/pdf/mislevy_four_metaphors_understand_assessment.pdf. Retrieved 28 Apr 2020

  56. Mislevy, R.J., Almond, R.G., Lukas, J.F.: A brief introduction to evidence-centered design. ETS Res. Rep. Ser. 2003(1), i-29 (2003)

    Google Scholar 

  57. Mislevy, R.J., et al.: Psychometric considerations in game-based assessment (2014). [white paper] Retrieved from Institute of Play website. https://web.archive.org/web/20160320151604/http://www.instituteofplay.org/wp-content/uploads/2014/02/GlassLab_GBA1_WhitePaperFull.pdf (2014)

  58. Mislevy, R.J., Riconscente, M.M.: Evidence-centered assessment design. In: Handbook of Test Development, pp. 75–104. Routledge (2011)

    Google Scholar 

  59. Nabizadeh, A.H., Gonçalves, D., Gama, S., Jorge, J., Rafsanjani, H.N.: Adaptive learning path recommender approach using auxiliary learning objects. Comput. Educ. 147, 103777 (2020)

    Article  Google Scholar 

  60. Novick, M.R.: The axioms and principal results of classical test theory. J. Math. Psychol. 3(1), 1–18 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  61. Ohlsson, S.: Constraint-based student modeling. J. Artif. Intell. Educ. 3(4), 429–447 (1992)

    Google Scholar 

  62. Pardos, Z.A., Heffernan, N.T.: KT-IDEM: introducing item difficulty to the knowledge tracing model. In: Konstan, J.A., Conejo, R., Marzo, J.L. Oliver, N. (Eds.) Proceedings of the 19th International Conference User Modeling, Adaption and Personalization, pp. 243–254 (2011)

    Google Scholar 

  63. Reye, J.: Student modelling based on belief networks. Int. J. Artif. Intell. Educ. 14, 63–96 (2004)

    Google Scholar 

  64. Ribeiro, M.T., Singh, S., Guestrin, C.: Why should I trust you? Explaining the predictions of any classifier. In: Proceedings of the 22nd SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1135–1144 (2016)

    Google Scholar 

  65. Rich, E.: User modeling via stereotypes. Cognitive Sci. 3(4), 329–354 (1979)

    Article  Google Scholar 

  66. Rudin, C.: Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nat. Mach. Intell. 1, 206–215 (2019)

    Article  Google Scholar 

  67. Rudin, C., Radin, J.: Why are we using black box models in AI when we don’t need to? A lesson from an explainable AI competition. Harvard Data Sci. Rev. 1(2) (2019)

    Google Scholar 

  68. Rosé, C.P., McLaughlin, E.A., Liu, R., Koedinger, K.R.: Explanatory learner models: why machine learning (alone) is not the answer. Br. J. Educ. Technol. 50(6), 2943–2958 (2019)

    Article  Google Scholar 

  69. Seridi-Bouchelaghem, H., Sari, T., Sellami, M.: A neural network for generating adaptive lessons. J. Comput. Sci. 1(2), 232–243 (2005)

    Article  Google Scholar 

  70. Sison, R., Shimura, M.: Student modeling and machine learning. Int. J. Artif. Intell. Educ. 9, 128–158 (1998)

    Google Scholar 

  71. Shute, V.J., Ventura, M., Bauer, M.I., Zapata-Rivera, D.: Melding the power of serious games and embedded assessment to monitor and foster learning: Flow and grow. In: Ritterfeld, U., Cody, M.J., Vorderer, P. (eds.) Serious Games: Mechanisms and Effects, pp. 295–321. Routledge, Philadelphia (2009)

    Google Scholar 

  72. Shute, V., Wang, L., Greiff, S., Zhao, W., Moore, G.: Measuring problem solving skills via stealth assessment in an engaging video game. Comput. Hum. Behav. 63, 106–117 (2016)

    Article  Google Scholar 

  73. Shute, V.J., Zapata-Rivera, D.: Adaptive educational systems. In: Durlach, P. (ed.) Adaptive Technologies for Training and Education, pp. 7–27. Cambridge University Press, New York (2012)

    Chapter  Google Scholar 

  74. Stansfield, J.C., Carr, B., Goldstein, I.P.: Wumpus advisor I: a first implementation of a program that tutors logical and probabilistic reasoning skills. At Lab Memo 381, Massachusetts Institute of Technology, Cambridge, Massachusetts (1976)

    Google Scholar 

  75. Tenison, C., Arslan, B.: Characterizing pause behaviors in a science inquiry task. In: Stewart, T.C. (Ed.). Proceedings of the 18th International Conference on Cognitive Modeling, Applied Cognitive Science Lab, Penn State, University Park, PA, pp. 283–298 (2020)

    Google Scholar 

  76. Tatsuoka, K.K.: Rule space: an approach for dealing with misconceptions based on item response theory. J. Educ. Meas. 20, 345–354 (1983)

    Article  Google Scholar 

  77. Traub, R.: Classical test theory in historical perspective. Educ. Meas. Issues Pract. 16(4), 8–14 (1997). https://doi.org/10.1111/j.1745-3992.1997.tb00603.x

    Article  Google Scholar 

  78. Vassileva, J., Wasson, B.: Instructional planning approaches: From tutoring towards free learning. In: Proceedings of EuroAIED 1996, Lisbon, Portugal, 30 September–2 October 1996, pp. 1–8 (1996)

    Google Scholar 

  79. Vincent-Lancrin, S., van der Vlies, R.: Trustworthy artificial intelligence (AI) in education: Promises and challenges. OECD Education Working Papers, No. 218. OECD Publishing, Paris (2020). https://doi.org/10.1787/a6c90fa9-en.

  80. Webb, G.I., Pazzani, M.J., Billsus, D.: Machine learning for user modeling. User Model. User-Adap. Inter. 11(1), 19–29 (2001)

    Article  MATH  Google Scholar 

  81. Yudelson, M.V., Koedinger, K.R., Gordon, G.J.: Individualized Bayesian knowledge tracing models. In: International Conference on Artificial Intelligence in Education, 171–180 (2013)

    Google Scholar 

  82. Zadeh, L.A.: Fuzzysets. Information and Control, pp. 338–353 (1965)

    Google Scholar 

  83. Zakrzewska, D.: Cluster analysis in personalized e-learning systems. In: Nguyen, N.T., Szczerbicki, E. (Eds.) Intelligent Systems for Knowledge Management, 229–250 (2009)

    Google Scholar 

  84. Zhang, M.: Contrasting automated and human scoring of essays. R & D Connections 21(2), 1–11 (2013)

    Google Scholar 

  85. Zhou, Y., Huang, C., Hu, Q., Zhu, J., Tang, Y.: Personalized learning full-path recommendation model based on LSTM neural networks. Inf. Sci. 444, 135–152 (2018)

    Article  Google Scholar 

  86. Zapata-Rivera, D.: Supporting human inspection of adaptive instructional systems. In: Sottilare, R.A., Schwarz, J. (eds.) HCII 2019. LNCS, vol. 11597, pp. 482–490. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-22341-0_38

    Chapter  Google Scholar 

  87. Zapata-Rivera, D.: Open student modeling research and its connections to educational assessment. Int. J. Artif. Intell. Educ. (2020). https://doi.org/10.1007/s40593-020-00206-2

  88. Zapata-Rivera, D., Brawner, K., Jackson, G.T., Katz, I.R.: Reusing evidence in assessment and intelligent tutors. In: Sottilare, R., Graesser, A., Hu, X., Goodwin, G. (Eds.) Design Recommendations for Intelligent Tutoring Systems: Volume 5 - Assessment Methods. U.S. Army Research Laboratory, Orlando, FL (2017). ISBN 978–0–9893923–9–6. 125–136

    Google Scholar 

  89. Zapata-Rivera, D., Graesser, A., Kay, J., Hu, X., Ososky, S.: Visualization Implications for the Validity of ITS. In: Sinatra, R.A.M., Graesser, A.C., Hu, X., Goldberg, B., Hampton, A.J. (Eds.) Design Recommendations for Intelligent Tutoring Systems: Volume 8 – Data Visualization. U.S. Army CCDC - Soldier Center, Orlando, FL, pp. 61–68 (2020)

    Google Scholar 

  90. Zapata-Rivera, D., Greer, J.: Interacting with Bayesian student models. Int. J. Artif. Intell. Educ. 14(2), 127–163 (2004)

    Google Scholar 

  91. Zapata-Rivera, D., Lehman, B., Sparks, J.R.: Learner modeling in the context of caring assessments. In: Sottilare, R.A., Schwarz, J. (eds.) HCII 2020. LNCS, vol. 12214, pp. 422–431. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-50788-6_31

    Chapter  Google Scholar 

  92. Zapata-Rivera, D., Liu, L., Chen, L., Hao, J., von Davier, A.A.: Assessing science inquiry skills in an immersive, conversation-based scenario. In: Kei Daniel, B. (ed.) Big Data and Learning Analytics in Higher Education, pp. 237–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-06520-5_14

    Chapter  Google Scholar 

  93. Zapata-Rivera, D., Vanwinkle, W., Shute, V., Underwood, J., Bauer, M.: English ABLE. In: Luckin, R., Koedinger, K., Greer, J. (Eds.) Artificial Intelligence in Education - Building Technology Rich Learning Contexts that Work, vol. 158, pp. 323–330 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diego Zapata-Rivera .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zapata-Rivera, D., Arslan, B. (2021). Enhancing Personalization by Integrating Top-Down and Bottom-Up Approaches to Learner Modeling. In: Sottilare, R.A., Schwarz, J. (eds) Adaptive Instructional Systems. Adaptation Strategies and Methods. HCII 2021. Lecture Notes in Computer Science(), vol 12793. Springer, Cham. https://doi.org/10.1007/978-3-030-77873-6_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-77873-6_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-77872-9

  • Online ISBN: 978-3-030-77873-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics