Skip to main content

Improve Students’ Learning Experience in General Chemistry Laboratory Courses

  • Conference paper
  • First Online:
HCI in Games: Serious and Immersive Games (HCII 2021)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12790))

Included in the following conference series:

Abstract

The current shift from a traditional classroom laboratory to a partial remote virtual lab is mainly due to COVID-19 pandemic. This pedagogical change is forcing academic institutions to rethink and redesign their lab courses. VR is promising technology to support this change. This study reviews current literature of the VR systems applied in higher education, clarifies some technical terms related to VR technology, and identifies the strengths and weaknesses of this technology. After a semi-interview with faculty members and students in the Chemistry department at a US university, we propose a new hybrid lab design with VR technology based on the literature review and interview results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bretz, S.L., Fay, M., Bruck, L.B., Towns, M.H.: What faculty interviews reveal about meaningful learning in the undergraduate chemistry laboratory. J. Chem. Educ. 90(3), 281–288 (2013)

    Article  Google Scholar 

  2. Dunnagan, C.L., Dannenberg, D.A., Cuales, M.P., Earnest, A.D., Gurnsey, R.M., Gallardo-Williams, M.T.: Production and evaluation of a realistic immersive virtual reality organic chemistry laboratory experience: infrared spectroscopy. J. Chem. Educ. 97, 258–262 (2019)

    Article  Google Scholar 

  3. Kelley, E.W.: Reflections on three different high school chemistry lab formats during COVID-19 Remote learning. J. Chem. Educ. 97(9), 2606–2616 (2020)

    Article  Google Scholar 

  4. Bruck, A.D., Towns, M.: Development, implementation, and analysis of a national survey of faculty goals for undergraduate chemistry laboratory. J. Chem. Educ. 90(6), 685–693 (2013)

    Article  Google Scholar 

  5. Shetty, V., Suresh, L.R., Hegde, A.M.: Effect of virtual reality distraction on pain and anxiety during dental treatment in 5 to 8 year old children. J. Clin. Pediatr. Dent. 43(2), 97–102 (2019)

    Article  Google Scholar 

  6. Scapin, S., Echevarría-Guanilo, M.E., Junior, P.R.B.F., Goncalves, N., Rocha, P.K., Coimbra, R.: Virtual Reality in the treatment of burn patients: a systematic review. Burns 44(6), 1403–1416 (2018)

    Article  Google Scholar 

  7. Arane, K., Behboudi, A., Goldman, R.D.: Virtual reality for pain and anxiety management in children. Can. Fam. Physician 63(12), 932–934 (2017)

    Google Scholar 

  8. Wang, P., Wu, P., Wang, J., Chi, H.L., Wang, X.: A critical review of the use of virtual reality in construction engineering education and training. Int. J. Environ. Res. Public Health 15(6), 1204 (2018)

    Article  Google Scholar 

  9. Ahir, K., Govani, K., Gajera, R., Shah, M.: Application on virtual reality for enhanced education learning, military training and sports. Augmented Human Research 5(1), 1–9 (2020)

    Article  Google Scholar 

  10. Radianti, J., Majchrzak, T.A., Fromm, J., Wohlgenannt, I.: A systematic review of immersive virtual reality applications for higher education: design elements, lessons learned, and research agenda. Comput. Educ. 147, 103778 (2020)

    Article  Google Scholar 

  11. Degli Innocenti, E., et al.: Mobile virtual reality for musical genre learning in primary education. Comput. Educ. 139, 102–117 (2019)

    Article  Google Scholar 

  12. Johnston, E., Olivas, G., Steele, P., Smith, C., Bailey, L.: Exploring pedagogical foundations of existing virtual reality educational applications: a content analysis study. J. Educ. Technol. Syst. 46(4), 414–439 (2018)

    Article  Google Scholar 

  13. Kober, S., Kurzmann, J., Neuper, C.: Cortical correlate of spatial presence in 2D and 3D interactive virtual reality: an EEG study. Int. J. Psychophysiol. 83, 365–374 (2012)

    Article  Google Scholar 

  14. Fung, F.M., et al.: Applying a virtual reality platform in environmental chemistry education to conduct a field trip to an overseas site. J. Chem. Educ. 96, 382–386 (2019)

    Article  Google Scholar 

  15. Potkonjak, M.T., Lin, Y.W., She, H.C.: Learning through playing virtual age: exploring the interactions among student concept learning, gaming performance, in-game behaviors, and the use of in-game characters. Comput. Educ. 86, 18–29 (2015)

    Article  Google Scholar 

  16. Wang, C.Y., et al.: A Review of research on technology-assisted school science laboratories. Educ. Technol. Soc. 17(2), 307–320 (2014)

    Google Scholar 

  17. Lee, E.A., Wong, K.W.: Learning with desktop virtual reality: low spatial ability learners are more positively affected. Comput. Educ. 79, 49–58 (2014)

    Article  Google Scholar 

  18. Jang, S., Vitale, J.M., Jyung, R.W., Black, J.B.: Direct manipulation is better than passive viewing for learning anatomy in a three-dimensional virtual reality environment. Comput. Educ. 106, 150–165 (2017)

    Article  Google Scholar 

  19. August, S.E., Hammers, M.L., Murphy, D.B., Neyer, A., Gueye, P., Thames, R.Q.: Virtual engineering sciences learning lab: giving stem education a Second Life. IEEE Trans. Learn. Technol. 9, 18–30 (2016)

    Article  Google Scholar 

  20. Winkelmann, K., Keeney-Kennicutt, W., Fowler, D., Macik, M.: Development, implementation, and assessment of general chemistry lab experiments performed in the virtual world of second life. J. Chem. Educ. 94(7), 849–858 (2017)

    Article  Google Scholar 

  21. Jensen, L., Konradsen, F.: A review of the use of virtual reality head-mounted displays in education and training. Educ. Inf. Technol. 23(4), 1515–1529 (2017). https://doi.org/10.1007/s10639-017-9676-0

    Article  Google Scholar 

  22. Pan, Z., Cheok, A.D., Yang, H., Zhu, J., Shi, J.: Virtual reality and mixed reality for virtual learning environments. Comput. Graph. 30, 20–28 (2006)

    Article  Google Scholar 

  23. Slater, M., Wilbur, S.: A framework for immersive virtual environments: Speculations on the role of presence in virtual environments. Teleoper. Virtual Environ. 6(6), 603–616 (1997)

    Article  Google Scholar 

  24. Kaplan, A.D., Cruit, J., Endsley, M., Beers, S.M., Sawyer, B.D., Hancock, P.A.: The effects of virtual reality, augmented reality, and mixed reality as training enhancement methods: a meta-analysis. Hum. Factors 0018720820904229 (2020)

    Google Scholar 

  25. Kolb, D.A.: Experiential Learning: Experiential Learning: Experience as the Source of Learning and Development. Prentice-Hall, Englewood Cliffs (1984)

    Google Scholar 

  26. Kolb, D.A., Boyatzis, R.E., Mainemelis, C.: Experiential learning theory: previous research and new directions. Perspect. Think. Learn. Cogn. Styles 1(8), 227–247 (2001)

    Google Scholar 

  27. Poore, J.A., Cullen, D.L., Schaar, G.L.: Simulation-based interprofessional education guided by Kolb’s experiential learning theory. Clin. Simul. Nurs. 10(5), 241–247 (2014)

    Article  Google Scholar 

  28. Eick, C.J., King, D.T., Jr.: Nonscience majors’ perceptions on the use of YouTube video to support learning in an integrated science lecture. J. Coll. Sci. Teach. 42, 26–30 (2012)

    Google Scholar 

  29. Lin, L., Atkinson, R.K.: Using animations and visual cueing to support learning of scientific concepts and processes. Comput. Educ. 56, 650–658 (2011)

    Article  Google Scholar 

  30. Liou, H.H., Yang, S.J., Chen, S.Y., Tarng, W.: The influences of the 2D image-based augmented reality and virtual reality on student learning. J. Educ. Technol. Soc. 20(3), 110–121 (2017)

    Google Scholar 

  31. Radianti, J., Majchrzak, T.A., Fromm, J., Wohlgenannt, I.: A systematic review of immersive virtual reality applications for higher education: design elements, lessons learned, and research agenda. Comput. Educ. 147, 103778 (2019)

    Article  Google Scholar 

  32. De Jong, T. Instruction based on computer simulations and virtual laboratories. In: Mayer, R.E., Alexander, P.A. (eds.) Handbook of Research on Learning and Instruction, 2nd edn., pp. 502–521. Routledge, New York (2017)

    Google Scholar 

  33. Makransky, G., Lilleholt, L., Aaby, A.: Development and validation of the multimodal presence scale for virtual reality environments: a confirmatory factor analysis and item response theory approach. Comput. Hum. Behav. 72, 276–285 (2017)

    Article  Google Scholar 

  34. Merchant, Z., Goetz, E.T., Cifuentes, L., Keeney-Kennicutt, W., Davis, T.J.: Effectiveness of virtual reality-based instruction on students’ learning outcomes in K-12 and higher education: a meta-analysis. Comput. Educ. 70, 29–40 (2014)

    Article  Google Scholar 

  35. Yu, M., Mann, J.S.: Development of virtual reality simulation program for high-risk neonatal infection control education. Clin. Simul. Nurs. 50(C), 19–26 (2021)

    Article  Google Scholar 

  36. Potkonjak, V., et al.: Virtual laboratories for education in science, technology, and engineering: a review. Comput. Educ. 95, 309–327 (2016)

    Article  Google Scholar 

  37. Loureiro, A., Bettencourt, T.: The use of virtual environments as an extended classroom–a case study with adult learners in tertiary education. Proc. Technol. 13, 97–106 (2014)

    Article  Google Scholar 

  38. Cai, S., Chiang, F., Sun, Y., Lin, C., Lee, J.: Applications of augmented reality-based natural interactive learning in magnetic field instruction. Interact. Learn. Environ. 25(6), 778–791 (2017)

    Article  Google Scholar 

  39. Pellas, N., Fotaris, P., Kazanidis, I., Wells, D.: Augmenting the learning experience in primary and secondary school education: a systematic review of recent trends in augmented reality game-based learning. Virtual Reality 23(4), 329–346 (2019)

    Article  Google Scholar 

  40. Paxinou, E., Panagiotakopoulos, C., Karatrantou, A., Kalles, D., Sgourou, A.: Implementation and evaluation of a three-dimensional virtual reality biology lab versus conventional didactic practices in lab experimenting with the photonic microscope. Biochem. Mol. Biol. Educ. 48(1), 21–27 (2020)

    Article  Google Scholar 

  41. Winkelmann, K.: Virtual worlds and their uses in chemical education. In: Suits, J., Sanger, M. (eds.) Pedagogic Roles of Animations and Simulations in Chemistry Courses. ACS Symposium Series, vol. 1142, pp. 161−179. American Chemical Society, Washington, DC (2013)

    Google Scholar 

  42. Cikajlo, I., Potisk, K.P.: Advantages of using 3D virtual reality based training in persons with Parkinson’s disease: a parallel study. J. Neuroeng. Rehabil. 16(1), 1–14 (2019)

    Article  Google Scholar 

  43. Davenport, J., Rafferty, A., Yaron, D.: Whether and how authentic contexts using a virtual chemistry lab support learning. J. Chem. Educ. 95(8), 1250–1259 (2018)

    Article  Google Scholar 

  44. Alalwan, N., Cheng, L., Al-Samarraie, H., Yousef, R., Alzahrani, A.I., Sarsam, S.M.: Challenges and prospects of virtual reality and augmented reality utilization among primary school teachers: a developing country perspective. Stud. Educ. Eval. 66, 100876 (2020)

    Article  Google Scholar 

  45. Park, W.D., Jang, S.W., Kim, Y.H., Kim, G.A., Son, W., Kim, Y.S.: A study on cyber sickness reduction by oculo-motor exercise performed immediately prior to viewing virtual reality (VR) content on head mounted display (HMD). Vibroeng. Proc. 14, 260–264 (2017)

    Article  Google Scholar 

  46. Al-Ghareeb, A.Z., Cooper, S.J.: Barriers and enablers to the use of high-fidelity patient simulation manikins in nurse education: an integrative review. Nurse Educ. Today 36, 281–286 (2016)

    Article  Google Scholar 

  47. Fraser, K., Ma, I., Teteris, E., Baxter, H., Wright, B., Mclaughlin, K.: Emotion, cognitive load and learning outcomes during simulation training. Med. Educ. 46(11), 1055–1062 (2012)

    Article  Google Scholar 

  48. Macy, R., Schrader, V.: Pediophobia: a new challenge facing nursing faculty in clinical teaching by simulation. Clin. Simul. Nurs. 4(3), 89–91 (2008)

    Article  Google Scholar 

  49. Parong, J., Mayer, R.E.: Learning science in immersive virtual reality. J. Educ. Psychol. 110(6), 785–797 (2018)

    Article  Google Scholar 

  50. Makransky, G., Terkildsen, T.S., Mayer, R.E.: Adding immersive virtual reality to a science lab simulation causes more presence but less learning. Learn. Instr. 60, 225–236 (2019)

    Article  Google Scholar 

  51. Zhou, X., Tang, L., Lin, D., Han, W.: Virtual & augmented reality for biological microscope in experiment education. Virtual Reality Intell. Hardw. 2(4), 316–329 (2020)

    Article  Google Scholar 

  52. McDonnell, C., O’Connor, C., Seery, M.K.: Developing practical chemistry skills by means of student-driven problem based learning mini-projects. Chem. Educ. Res. Pract. 8, 130–139 (2007)

    Article  Google Scholar 

  53. Cartrette, D.P., Miller, M.L.: Purposeful design of formal laboratory instruction as a springboard to research participation. J. Chem. Educ. 90, 171–177 (2013)

    Article  Google Scholar 

  54. Mio, M.J., Benvenuto, M.A.: The unsafe lab practical. J. Chem. Educ. 98(1), 243–245 (2021)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yinghong Sheng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sheng, Y., Zhao, F. (2021). Improve Students’ Learning Experience in General Chemistry Laboratory Courses. In: Fang, X. (eds) HCI in Games: Serious and Immersive Games. HCII 2021. Lecture Notes in Computer Science(), vol 12790. Springer, Cham. https://doi.org/10.1007/978-3-030-77414-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-77414-1_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-77413-4

  • Online ISBN: 978-3-030-77414-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics