Skip to main content

On Parseval Frames of Kernel Functions in de Branges Spaces of Entire Vector Valued Functions

  • Chapter
  • First Online:
New Directions in Function Theory: From Complex to Hypercomplex to Non-Commutative

Part of the book series: Operator Theory: Advances and Applications ((LOLS,volume 286))

  • 352 Accesses

Abstract

We consider the existence and structure properties of Parseval frames of kernel functions in vector valued de Branges spaces. We develop some sufficient conditions for Parseval sequences by identifying the main construction with Naimark dilation of frames. The dilation occurs by embedding the de Branges space of vector valued functions into a dilated de Branges space of vector valued functions. The embedding also maps the kernel functions associated with a frame sequence of the original space into a Riesz basis for the embedding space. We also develop some sufficient conditions for a dilated de Branges space to have the Kramer sampling property.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. D. Alpay, A. Dijksma, J. Rovnyak, H. de Snoo, Schur functions, operator colligations, and reproducing kernel Pontryagin spaces, in Operator Theory: Advances and Applications, vol. 96 (Birkhäuser, Basel, 1997)

    Google Scholar 

  2. D. Alpay, A. Dijksma, J. Rovnyak, H.S.V. de Snoo, Realization and factorization in reproducing kernel Pontryagin spaces, in Operator Theory, System Theory and Related Topics (Beer-Sheva/Rehovot, 1997). Operator Theory: Advances and Applications, vol. 123 (Birkhäuser, Basel, 2001), pp. 43–65

    Google Scholar 

  3. S. al-Sa’di, E. Weber, Sampling in de Branges Spaces and Naimark Dilation. Compl. Anal. Oper. Theory 11(3), 583–601 (2017)

    Google Scholar 

  4. N. Aronszajn, Theory of reproducing kernels. Trans. Am. Math. Soc. 68, 337–404 (1950)

    Article  MathSciNet  Google Scholar 

  5. D.Z. Arov, H. Dym, J-contractive matrix valued functions and related topics, in Encyclopedia of Mathematics and its Applications, vol. 116 (Cambridge University, Cambridge, 2008)

    MATH  Google Scholar 

  6. D.Z. Arov, H. Dym, Bitangential direct and inverse problems for systems of integral and differential equations, in Encyclopedia of Mathematics and its Applications, vol. 145 (Cambridge University Press, Cambridge, 2012)

    MATH  Google Scholar 

  7. D.Z. Arov, H. Dym, de Branges Spaces of Vector-Valued Functions. Oper. Theory, 721–752 (2015)

    Google Scholar 

  8. R. Balan, Density and redundancy of the noncoherent Weyl-Heisenberg superframes, in The Functional and Harmonic Analysis of Wavelets and Frames (San Antonio, TX, 1999). Contemporary Mathematics, vol. 247 (American Mathematical Society, Providence, 1999), pp. 29–41

    Google Scholar 

  9. J.A. Ball, A lifting theorem for operator models of finite rank on multiply-connected domains. J. Oper. Theory 1(1), 3–25 (1979)

    MathSciNet  MATH  Google Scholar 

  10. G. Bhatt, B.D. Johnson, E. Weber, Orthogonal wavelet frames and vector-valued wavelet transforms. Appl. Comput. Harmon. Anal. 23(2), 215–234 (2007)

    Article  MathSciNet  Google Scholar 

  11. P.G. Casazza, The art of frame theory. Taiwanese J. Math. 4(2), 129–201 (2000)

    Article  MathSciNet  Google Scholar 

  12. L. de Branges, The comparison theorem for Hilbert spaces of entire functions. Integr. Equ. Oper. Theory 6(5), 603–646 (1983)

    Article  MathSciNet  Google Scholar 

  13. L. de Branges, J. Rovnyak, Canonical models in quantum scattering theory, in Perturbation Theory and its Applications in Quantum Mechanics (Proceedings of the Advance Seminar Mathematics Research Center, U.S. Army, Theoretical Chemical Institute, University of Wisconsin, Madison, Wisconsin, 1965) (Wiley, New York, 1966), pp. 295–392

    Google Scholar 

  14. R.J. Duffin, A.C. Schaeffer, A class of nonharmonic Fourier series. Trans. Am. Math. Soc. 72, 341–366 (1952)

    Article  MathSciNet  Google Scholar 

  15. H. Dym, J contractive matrix functions, reproducing kernel Hilbert spaces and interpolation, in CBMS Regional Conference Series in Mathematics, vol. 71 (American Mathematical Society, Providence, 1989). Published for the Conference Board of the Mathematical Sciences, Washington, DC

    Google Scholar 

  16. H. Dym, S. Sarkar, Multiplication operators with deficiency indices (p, p) and sampling formulas in reproducing kernel Hilbert spaces of entire vector valued functions. J. Funct. Anal. 273(12), 3671–3718 (2017)

    Article  MathSciNet  Google Scholar 

  17. D. Han, D.R. Larson, Frames, bases and group representations. Mem. Am. Math. Soc. 147(697), x+94 (2000)

    Google Scholar 

  18. D. Han, K. Kornelson, D. Larson, E. Weber, Frames for undergraduates, in Student Mathematical Library, vol. 40 (American Mathematical Society, Providence, 2007)

    MATH  Google Scholar 

  19. H.P. Kramer, A generalized sampling theorem. J. Math. Phys. 38(1–4), 68–72 (1959)

    Article  MathSciNet  Google Scholar 

  20. M. Neumark, Spectral functions of a symmetric operator. Bull. Acad. Sci. URSS. Sér. Math. [Izvestia Akad. Nauk SSSR] 4, 277–318 (1940)

    Google Scholar 

  21. M.A. Neumark, On a representation of additive operator set functions. C. R. (Doklady) Acad. Sci. URSS (N.S.) 41, 359–361 (1943)

    Google Scholar 

  22. K. Seip, Interpolation and sampling in spaces of analytic functions, in University Lecture Series, vol. 33 (American Mathematical Society, Providence, 2004)

    MATH  Google Scholar 

  23. E. Weber, Orthogonal frames of translates. Appl. Comput. Harmon. Anal. 17(1), 69–90 (2004)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

Eric Weber was supported in part by NSF awards #1830254 and #1934884.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric S. Weber .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Al-Sa’di, S., Weber, E.S. (2021). On Parseval Frames of Kernel Functions in de Branges Spaces of Entire Vector Valued Functions. In: Alpay, D., Peretz, R., Shoikhet, D., Vajiac, M.B. (eds) New Directions in Function Theory: From Complex to Hypercomplex to Non-Commutative. Operator Theory: Advances and Applications(), vol 286. Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-76473-9_1

Download citation

Publish with us

Policies and ethics