Skip to main content

Application of a U-Net Convolutional Neural Network to Ultrasonic Wavefield Measurements for Defect Characterization

  • Conference paper
  • First Online:
Rotating Machinery, Optical Methods & Scanning LDV Methods, Volume 6

Abstract

Recent advances in nondestructive evaluation (NDE) techniques have sought to improve the testing speed and accuracy of automatic flaw detection algorithms to minimize the costly downtime of removing in-service parts and components for testing and maintenance. Acoustic wavenumber spectroscopy (AWS) is a rapid NDE technique that utilizes steady-state ultrasonic excitation and laser Doppler vibrometer (LDV) measurements to identify component flaws orders of magnitude faster than traditional time-of-flight ultrasonic NDE techniques. However, current AWS technology is limited when applied to larger domains, such as rooms and larger structures, due to increased processing needs, and it is limited in accuracy and spatial resolution when applied to smaller defects on the order of one wavelength in size as well as defects on the edges of the structure. This paper presents the novel application of a U-Net style convolutional neural network (CNN) to improve the processing speed and spatial resolution of current AWS technology by performing semantic segmentation on simulated ultrasonic wavefield images of a steady-state, single-tone excitation of an aluminum plate. The well-adopted ResNet architecture, which was pre-trained on the large and openly available ImageNet dataset, was trained by transfer learning on the augmented wavefield dataset for the purpose of defect localization and characterization in aluminum plates. Finally, the performance of the CNN processing time and spatial resolution accuracy were shown to improve upon the processing methods of current AWS technology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Farrar, C.R., Worden, K.: An introduction to structural health monitoring. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 365(1851), 303–315 (2007)

    Article  Google Scholar 

  2. Thompson, R.B., Thompson, D.O.: Ultrasonics in nondestructive evaluation. Proc. IEEE 73(12), 1716–1755 (1985)

    Article  Google Scholar 

  3. Staszewski, W.J., Lee, B.C., Traynor, R.: Fatigue crack detection in metallic structures with lamb waves and 3D laser vibrometry. Measure. Sci. Technol. 18(3), 727–739 (2007)

    Article  Google Scholar 

  4. Aryan, P., Kotousov, A., Ng, C.T., Cazzolato, B.S.: A baseline-free and non-contact method for detection and imaging of structural damage using 3D laser vibrometry. Struct. Control Health Monit. 24(4), e1894 (2017)

    Article  Google Scholar 

  5. Michaels, T.E., Michaels, J.E.: Application of acoustic wavefield imaging to non-contact ultrasonic inspection of bonded components. AIP Conf. Proc. 820(1), 1484–1491 (2006)

    Article  Google Scholar 

  6. Rogge, M.D., Leckey, C.A.: Characterization of impact damage in composite laminates using guided wavefield imaging and local wavenumber domain analysis. Ultrasonics 53(7), 1217–1226 (2013)

    Article  Google Scholar 

  7. Ruzzene, M.: Frequency–wavenumber domain filtering for improved damage visualization. Smart Mater. Struct. 16(6), 2116–2129 (2007)

    Article  Google Scholar 

  8. Mesnil, O., Yan, H., Ruzzene, M., Paynabar, K., Shi, J.: Fast wavenumber measurement for accurate and automatic location and quantification of defect in composite. Struct. Health Monit. 15(2), 223–234 (2016)

    Article  Google Scholar 

  9. Flynn, E.B., Jarmer, G.S.: High-speed, non-contact, baseline-free imaging of hidden defects using scanning laser measurements of steady-state ultrasonic vibration. In: Structural Health Monitoring 2013: Proceedings of the Ninth International Workshop on Structural Health Monitoring, September 10–12, 2013, vol. 1, pp. 1186–1193. Stanford University, Standard, CA (2013)

    Google Scholar 

  10. Flynn, E.B., Chong, S.Y., Jarmer, G.J., Lee, J.: Structural imaging through local wavenumber estimation of guided waves. NDT& E Int. 59, 1–10 (2013)

    Article  Google Scholar 

  11. O’Dowd, N.M., Han, D., Kang, L., Flynn, E.B.: Exploring the performance limits of full-field acoustic wavenumber spectroscopy techniques for damage detection through numerical simulation. In: 8th European Workshop on Structural Health Monitoring, July 5–8, 2016, Bilbao

    Google Scholar 

  12. Fukushima, K.: Neocognitron: a self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biol. Cybernet. 36, 193–202 (1980)

    Article  Google Scholar 

  13. Gu, J., et al.: Recent advances in convolutional neural networks. Pattern Recogn. 77, 354–377 (2018)

    Article  Google Scholar 

  14. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations by back-propagating errors. Nature 323(6088), 533–536 (1986)

    Article  Google Scholar 

  15. Jia, Y., et al.: Caffe: convolutional architecture for fast feature embedding. Preprint. arXiv:1408.5093. Jun. 2014

    Google Scholar 

  16. Abadi, M., et al.: Tensorflow: a system for large-scale machine learning. In: 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI 16), Novembe 2016, pp. 265–283. USENIX Association, Savannah, GA (2016)

    Google Scholar 

  17. Howard, J., Gugger, S.: Fastai: a layered API for deep learning. Information 11(2), 108 (2020)

    Article  Google Scholar 

  18. Paszke, A., et al.: PyTorch: an imperative style, high-performance deep learning library. In: Advances in Neural Information Processing Systems, vol. 32, pp. 8024–8035 (2019)

    Google Scholar 

  19. De Oliveira, M.A., Monteiro, A.V., Vieira Filho, J.: A new structural health monitoring strategy based on PZT sensors and convolutional neural network. Sensors 18(9), 2955 (2018)

    Article  Google Scholar 

  20. Ren, Y., et al.: Image-based concrete crack detection in tunnels using deep fully convolutional networks. Construct. Build. Mater. 234, 117367 (2020)

    Article  Google Scholar 

  21. Hou, W., Wei, Y., Guo, J., Jin, Y., Zhu, C.: Automatic detection of welding defects using deep neural network. J. Phys. Conf. Ser. 933, 012006 (2018)

    Article  Google Scholar 

  22. Munir, N., Kim, H.-J., Park, J., Song, S.-J., Kang, S.-S.: Convolutional neural network for ultrasonic weldment flaw classification in noisy conditions. Ultrasonics 94, 74–81 (2019)

    Article  Google Scholar 

  23. Munir, N., Park, J., Kim, H.-J., Song, S.-J., Kang, S.-S.: Performance enhancement of convolutional neural network for ultrasonic flaw classification by adopting autoencoder. NDT E Int. 111, 102218 (2020)

    Article  Google Scholar 

  24. Virkkunen, I., Koskinen, T., Jessen-Juhler, O., Rinta-Aho, J.: Augmented ultrasonic data for machine learning (2019). Preprint. arXiv:1903.11399

    Google Scholar 

  25. Meng, M., Chua, Y.J., Wouterson, E., Ong, C.P.K.: Ultrasonic signal classification and imaging system for composite materials via deep convolutional neural networks. Neurocomputing 257, 128–135 (2017)

    Article  Google Scholar 

  26. Lateef, F., Ruichek, Y.: Survey on semantic segmentation using deep learning techniques. Neurocomputing 338, 321–348 (2019)

    Article  Google Scholar 

  27. Chen, L., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: Deeplab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell. 40(4), 834–848 (2018)

    Article  Google Scholar 

  28. Liu, F., Lin, G., Shen, C.: CRF learning with CNN features for image segmentation. Pattern Recogn. 48(10), 2983–2992 (2015)

    Article  Google Scholar 

  29. Cao, C., Huang, Y., Yang, Y., Wang, L., Wang, Z., Tan, T.: Feedback convolutional neural network for visual localization and segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 41(7), 1627–1640 (2019)

    Article  Google Scholar 

  30. Mostajabi, M., Yadollahpour, P., Shakhnarovich, G.: Feedforward semantic segmentation with zoom-out features. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, June 2015, pp. 3376–3385

    Google Scholar 

  31. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. IEEE Trans. Pattern Anal. Mach. Intell. 42(2), 386–397 (2020)

    Article  Google Scholar 

  32. Zhou, Q., Zheng, B., Zhu, W., Jan Latecki, L.: Multi-scale context for scene labeling via flexible segmentation graph. Pattern Recogn. 59, 312–324 (2016)

    Article  Google Scholar 

  33. Shelhamer, E., Long, J., Darrell, T.: Fully convolutional networks for semantic segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39(4), 640–651 (2017)

    Article  Google Scholar 

  34. Badrinarayanan, V., Kendall, A., Cipolla, R.: SegNet: a deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39(12), 2481–2495 (2017)

    Article  Google Scholar 

  35. Lin, G., Liu, F., Milan, A., Shen, C., Reid, I.: RefineNet: multi-path refinement networks for dense prediction. IEEE Trans. Pattern Anal. Mach. Intell. 42(5), 1228–1242 (2020)

    Google Scholar 

  36. Gao, H., Yuan, H., Wang, Z., Ji, S.: Pixel transposed convolutional networks. IEEE Trans. Pattern Anal. Mach. Intell. 42(5), 1218–1227 (2020)

    Google Scholar 

  37. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, November 2015, pp. 234–241. Springer, New York (2015)

    Google Scholar 

  38. Liu, L., et al.: Deep learning for generic object detection: a survey. Int. J. Comput. Vis. 128(2), 261–318 (2020)

    Article  Google Scholar 

  39. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 770–778

    Google Scholar 

  40. Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-fei, L.: ImageNet: a large-scale hierarchical image database. In CVPR, 2009

    Google Scholar 

Download references

Acknowledgements

This research was funded by Los Alamos National Laboratory (LANL) through the Engineering Institute’s Los Alamos Dynamics Summer School. The Engineering Institute is a research and education collaboration between LANL and the University of California San Diego’s Jacobs School of Engineering. This collaboration seeks to promote multidisciplinary engineering research that develops and integrates advanced predictive modeling, novel sensing systems, and new developments in information technology to address LANL mission relevant problems.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam J. Wachtor .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Society for Experimental Mechanics, Inc.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Eckels, J.D., Fernandez, I.F., Ho, K., Dervilis, N., Jacobson, E.M., Wachtor, A.J. (2022). Application of a U-Net Convolutional Neural Network to Ultrasonic Wavefield Measurements for Defect Characterization. In: Di Maio, D., Baqersad, J. (eds) Rotating Machinery, Optical Methods & Scanning LDV Methods, Volume 6. Conference Proceedings of the Society for Experimental Mechanics Series. Springer, Cham. https://doi.org/10.1007/978-3-030-76335-0_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-76335-0_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-76334-3

  • Online ISBN: 978-3-030-76335-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics