Skip to main content

SAGCN: Towards Structure-Aware Deep Graph Convolutional Networks on Node Classification

  • Conference paper
  • First Online:
Advances in Knowledge Discovery and Data Mining (PAKDD 2021)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12713))

Included in the following conference series:

  • 2370 Accesses

Abstract

Graph Convolutional Networks (GCNs) have recently achiev-ed impressive performance in different classification tasks. However, over-smoothing remains a fundamental burden to achieve deep GCNs for node classification. This paper proposes Structure-Aware Deep Graph Convolutional Networks (SAGCN), a novel model to overcome this burden. At its core, SAGCN separates the initial node features from propagation and directly maps them to the output at each layer. Furthermore, SAGCN selectively aggregates the information from different propagation layers to generate structure-aware node representations, where the attention mechanism is exploited to adaptively balance the information from local and global neighborhoods for each node. Our experiments verify that the SAGCN model achieves state-of-the-art performance in various semi-supervised and full-supervised node classification tasks. More importantly, it outperforms many other backbone models, by using half the number of layers, or even fewer layers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Chen, M., Wei, Z., Huang, Z., Ding, B., Li, Y.: Simple and deep graph convolutional networks. arXiv preprint arXiv:2007.02133 (2020)

  2. Fey, M., Lenssen, J.E.: Fast graph representation learning with PyTorch geometric. arXiv preprint arXiv:1903.02428 (2019)

  3. Fout, A., Byrd, J., Shariat, B., Ben-Hur, A.: Protein interface prediction using graph convolutional networks. In: Proceedings of the 31th Advances in Neural Information Processing Systems, pp. 6530–6539 (2017)

    Google Scholar 

  4. He, X., Deng, K., Wang, X., Li, Y., Zhang, Y., Wang, M.: LightGCN: simplifying and powering graph convolution network for recommendation. arXiv preprint arXiv:2002.02126 (2020)

  5. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  6. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the 6th International Conference on Learning Representations (2017)

    Google Scholar 

  7. Klicpera, J., Bojchevski, A., Günnemann, S.: Predict then propagate: graph neural networks meet personalized pagerank. arXiv preprint arXiv:1810.05997 (2018)

  8. Li, C., Goldwasser, D.: Encoding social information with graph convolutional networks forpolitical perspective detection in news media. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 2594–2604 (2019)

    Google Scholar 

  9. Li, Q., Han, Z., Wu, X.-M.: Deeper insights into graph convolutional networks for semi-supervised learning. arXiv preprint arXiv:1801.07606 (2018)

  10. Liu, M., Gao, H., Ji, S.: Towards deeper graph neural networks. In: Proceedings of the 26th International Conference on Knowledge Discovery & Data Mining, pp.338–348 (2020)

    Google Scholar 

  11. Ma, J., Wen, J., Zhong, M., Chen, W., Zhou, X., Indulska, J.: Multi-source multi-net micro-video recommendation with hidden item category discovery. In: Li, G., Yang, J., Gama, J., Natwichai, J., Tong, Y. (eds.) DASFAA 2019. LNCS, vol. 11447, pp. 384–400. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-18579-4_23

    Chapter  Google Scholar 

  12. Nair, V., Hinton, G.E.: Rectified linear units improve restricted Boltzmann machines. In: International Conference on Machine Learning (2010)

    Google Scholar 

  13. Oono, K., Suzuki, T.: On asymptotic behaviors of graph cnns from dynamical systems perspective. arXiv preprint arXiv:1905.10947 (2019)

  14. Pei, H., Wei, B., Chang, K.C.C., Lei, Y., Yang, B.: Geom-GCN: geometric graph convolutional networks. arXiv preprint arXiv:2002.05287 (2020)

  15. Qiu, J., Tang, J., Ma, H., Dong, Y., Wang, K., Tang, J.: DeepInf: social influence prediction with deep learning. In: Proceedings of the 24th International Conference on Knowledge Discovery & Data Mining, pp. 2110–2119 (2018)

    Google Scholar 

  16. Rong, Y., Huang, W., Xu, T., Huang, J.: DropEdge: towards deep graph convolutional networks on node classification. In: International Conference on Learning Representations (2019)

    Google Scholar 

  17. Rozemberczki, B., Allen, C., Sarkar, R.: Multi-scale attributed node embedding. arXiv preprint arXiv:1909.13021 (2019)

  18. Sen, P., Namata, G., Bilgic, M., Getoor, L., Galligher, B., Eliassi-Rad, T.: Collective classification in network data. AI Mag. 29(3), 93–93 (2008)

    Google Scholar 

  19. Shang, J., Xiao, C., Ma, T., Li, H., Sun, J.: GAMNet: graph augmented memory networks for recommending medication combination. In: Proceedings of the 33rd AAAI Conference on Artificial Intelligence, vol. 33, pp. 1126–1133 (2019)

    Google Scholar 

  20. Thekumparampil, K.K., Wang, C., Oh, S., Li, L.J.: Attention-based graph neural network for semi-supervised learning. arXiv preprint arXiv:1803.03735 (2018)

  21. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y.: Graph attention networks. In: Proceedings of the 7th International Conference on Learning Representations (2018)

    Google Scholar 

  22. Xu, K., Li, C., Tian, Y., Sonobe, T., Kawarabayashi, K., Jegelka, S.: Representation learning on graphs with jumping knowledge networks. arXiv preprint arXiv:1806.03536 (2018)

  23. Yang, Z., Cohen, W., Salakhudinov, R.: Revisiting semi-supervised learning with graph embeddings. In: International Conference on Machine Learning, pp. 40–48. PMLR (2016)

    Google Scholar 

  24. Zhao, L., Peng, X., Tian, Y., Kapadia, M., Metaxas, D.N.: Semantic graph convolutional networks for 3d human pose regression. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3425–3435 (2019)

    Google Scholar 

  25. Zhu, H., et al.: Bilinear graph neural network with neighbor interactions. In: Proceedings of the 29th International Joint Conference on Artificial Intelligence, vol. 5 (2020)

    Google Scholar 

Download references

Acknowledgements

This work is supported by the Beijing Natural Science Foundation under grant 4192008.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming He .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

He, M., Ding, T., Han, T. (2021). SAGCN: Towards Structure-Aware Deep Graph Convolutional Networks on Node Classification. In: Karlapalem, K., et al. Advances in Knowledge Discovery and Data Mining. PAKDD 2021. Lecture Notes in Computer Science(), vol 12713. Springer, Cham. https://doi.org/10.1007/978-3-030-75765-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-75765-6_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-75764-9

  • Online ISBN: 978-3-030-75765-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics