Skip to main content

Maintaining Consistency with Constraints: A Constrained Deep Clustering Method

  • Conference paper
  • First Online:
Advances in Knowledge Discovery and Data Mining (PAKDD 2021)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12713))

Included in the following conference series:

  • 2335 Accesses

Abstract

Constrained clustering has been intensively explored in the data mining. Popular clustering algorithms such as k-means and spectral clustering are combined with prior knowledge to guide the clustering process. Recently, constrained clustering with deep neural network gains superior performance by jointly learning cluster-oriented feature representations and cluster assignments simultaneously. However, these methods face a common issue that they have poor performance when only minimal constraints are available because of their single way to mine constraint information. In this paper, we propose an end-to-end clustering method that learns unsupervised information and constraint information in two consecutive modules: an unsupervised clustering module to obtain feature representations and cluster assignments followed by a constrained clustering module to tune them. The constrained clustering module is composed of a Siamese or triplet network to maintain consistency with constraints. To capture more information from minimal constraints, the consistency is maintained from two perspective simultaneously: embedding space distance and cluster assignments. Extensive experiments on both pairwise and triplet constrained clustering validate the effectiveness of the proposed algorithm.

This work was supported by National Science Foundation of China (No.61632019; No.61876028; No.61972065; No.61806034).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Basu, S., Banerjee, A., Mooney, R.J.: Active semi-supervision for pairwise constrained clustering. In: Proceedings of the 2004 SIAM, pp. 333–344 (2004)

    Google Scholar 

  2. Bilenko, M., Basu, S., Mooney, R.J.: Integrating constraints and metric learning in semi-supervised clustering. In: ICML, p. 11 (2004)

    Google Scholar 

  3. Chen, X., Duan, Y., Houthooft, R., Schulman, J., Sutskever, I., Abbeel, P.: Infogan: interpretable representation learning by information maximizing generative adversarial nets (2016)

    Google Scholar 

  4. Clanuwat, T., Bober-Irizar, M., Kitamoto, A., Lamb, A., Yamamoto, K., Ha, D.: Deep learning for classical japanese literature. arXiv preprint arXiv:1812.01718 (2018)

  5. Dilokthanakul, N., et al.: Deep unsupervised clustering with gaussian mixture variational autoencoders. arXiv preprint arXiv:1611.02648 (2016)

  6. Guo, X., Gao, L., Liu, X., Yin, J.: Improved deep embedded clustering with local structure preservation. In: IJCAI (2017)

    Google Scholar 

  7. Guo, X., et al.: Adaptive self-paced deep clustering with data augmentation. IEEE TKDE, p. 1 (2019)

    Google Scholar 

  8. Hsu, Y.C., Kira, Z.: Neural network-based clustering using pairwise constraints. CoRR abs/1511.06321 (2015)

    Google Scholar 

  9. Huang, Z., Zhou, J.T., Peng, X., Zhang, C., Lv, J.: Multi-view spectral clustering network. In: IJCAI (2019)

    Google Scholar 

  10. Ji, P., Zhang, T., Li, H., Salzmann, M., Reid, I.: Deep subspace clustering networks. In: NIPS (2017)

    Google Scholar 

  11. Jiang, Z., Zheng, Y., Tan, H., Tang, B., Zhou, H.: Variational deep embedding: an unsupervised and generative approach to clustering. arXiv preprint arXiv:1611.05148 (2016)

  12. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

    Article  Google Scholar 

  13. Lewis, D.D., Yang, Y., Rose, T.G., Li, F.: Rcv1: a new benchmark collection for text categorization research. J. Mach. Learn. Res. 5(4), 361–397 (2004)

    Google Scholar 

  14. MacQueen, J., et al.: Some methods for classification and analysis of multivariate observations. In: Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, vol. 1, pp. 281–297. Oakland, CA, USA (1967)

    Google Scholar 

  15. Mukherjee, S., Asnani, H., Lin, E., Kannan, S.: Clustergan: latent space clustering in generative adversarial networks. Proc. AAAI Conf. Artif. Intell. 33, 4610–4617 (2019)

    Google Scholar 

  16. Ren, Y., Hu, K., Dai, X., Pan, L., Hoi, S.C., Xu, Z.: Semi-supervised deep embedded clustering. Neurocomputing 325, 121–130 (2019)

    Article  Google Scholar 

  17. Shaham, U., Stanton, K., Li, H., Nadler, B., Basri, R., Kluger, Y.: Spectralnet: spectral clustering using deep neural networks (2018)

    Google Scholar 

  18. Wagstaff, K., Cardie, C., Rogers, S., Schrödl, S., et al.: Constrained k-means clustering with background knowledge. ICML 1, 577–584 (2001)

    Google Scholar 

  19. Wang, X., Davidson, I.: Flexible constrained spectral clustering. In: SIGKDD, pp. 563–572 (2010)

    Google Scholar 

  20. Xiao, H., Rasul, K., Vollgraf, R.: Fashion-mnist: a novel image dataset for benchmarking machine learning algorithms. arXiv preprint arXiv:1708.07747 (2017)

  21. Xie, J., Girshick, R., Farhadi, A.: Unsupervised deep embedding for clustering analysis (2015)

    Google Scholar 

  22. Yang, B., Fu, X., Sidiropoulos, N.D., Hong, M.: Towards k-means-friendly spaces: simultaneous deep learning and clustering (2017)

    Google Scholar 

  23. Yang, J., Parikh, D., Batra, D.: Joint unsupervised learning of deep representations and image clusters. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5147–5156 (2016)

    Google Scholar 

  24. Yu, Y., Zhou, W.J.: Mixture of gans for clustering. In: IJCAI (2018)

    Google Scholar 

  25. Zhang, H., Basu, S., Davidson, I.: A framework for deep constrained clustering - algorithms and advances. In: Brefeld, U., Fromont, E., Hotho, A., Knobbe, A., Maathuis, M., Robardet, C. (eds.) ECML PKDD 2019. LNCS (LNAI), vol. 11906, pp. 57–72. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-46150-8_4

    Chapter  Google Scholar 

  26. Zhang, T., Ji, P., Harandi, M., Huang, W., Li, H.: Neural collaborative subspace clustering (2019)

    Google Scholar 

  27. Zhou, L., Xiao, B., Liu, X., Zhou, J., Hancock, E.R., et al.: Latent distribution preserving deep subspace clustering. In: IJCAI. York (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cui, Y., Zhang, X., Zong, L., Mu, J. (2021). Maintaining Consistency with Constraints: A Constrained Deep Clustering Method. In: Karlapalem, K., et al. Advances in Knowledge Discovery and Data Mining. PAKDD 2021. Lecture Notes in Computer Science(), vol 12713. Springer, Cham. https://doi.org/10.1007/978-3-030-75765-6_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-75765-6_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-75764-9

  • Online ISBN: 978-3-030-75765-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics