Skip to main content

Learning Probabilistic Latent Structure for Outlier Detection from Multi-view Data

  • Conference paper
  • First Online:
Advances in Knowledge Discovery and Data Mining (PAKDD 2021)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12712))

Included in the following conference series:

Abstract

Mining anomalous objects from multi-view data is a challenging issue as data collected from diverse sources have more complicated distributions and exhibit inconsistently heterogeneous properties. Existing multi-view outlier detection approaches mainly focus on transduction, which becomes very costly when new data points are introduced by an input stream. Besides, the existing detection methods use either the pairwise multiplication of cross-view data vectors to quantify outlier scores or the predicted joint probability to measure anomalousness, which are less extensible to support more sources. To resolve these challenges, we propose in this paper a Bayesian probabilistic model for finding multi-view outliers in an inductive learning manner. Specifically, we first follow the probabilistic projection method of latent variable for exploring the structural correlation and consistency of different views. Then, we seek for a promising Bayesian treatment for the generative model to approach the issue of selecting the optimal dimensionality. Next, we explore a variational approximation approach to estimate model parameters and achieve model selection. The outlier score for every sample can then be predicted by analyzing mutual distances of its representations across different views in the latent subspace. Finally, we benchmark the efficacy of the proposed method by conducting comprehensive experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://odds.cs.stonybrook.edu.

  2. 2.

    http://lig-membres.imag.fr/grimal/data.html.

References

  1. Akcay, S., Atapour-Abarghouei, A., Breckon, T.P.: GANomaly: semi-supervised anomaly detection via adversarial training. In: Jawahar, C.V., Li, H., Mori, G., Schindler, K. (eds.) ACCV 2018. LNCS, vol. 11363, pp. 622–637. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20893-6_39

    Chapter  Google Scholar 

  2. Archambeau, C., et al.: Sparse probabilistic projections. In: NIPS, pp. 73–80 (2009)

    Google Scholar 

  3. Chalapathy, R., et al.: Deep learning for anomaly detection: a survey. CoRR (2019)

    Google Scholar 

  4. Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection: a survey. ACM Comput. Surv. (CSUR) 41(3), 1–58 (2009)

    Article  Google Scholar 

  5. Chaudhuri, K., Kakade, S.M., Livescu, K., Sridharan, K.: Multi-view clustering via canonical correlation analysis. In: ICML, pp. 129–136 (2009)

    Google Scholar 

  6. Chen, M., Weinberger, K.Q., Chen, Y.: Automatic feature decomposition for single view co-training. In: ICML (2011)

    Google Scholar 

  7. Christoudias, M., et al.: Bayesian localized multiple kernel learning (2009)

    Google Scholar 

  8. Diethe, T., Hardoon, D.R., Shawe-Taylor, J.: Multiview fisher discriminant analysis. In: NeurIPS Workshop on Learning from Multiple Sources (2008)

    Google Scholar 

  9. Du, B., Zhang, L.: A discriminative metric learning based anomaly detection method. TGRS 52(11), 6844–6857 (2014)

    Google Scholar 

  10. Fyfe, C., Lai, P.L.: ICA using kernel canonical correlation analysis. In: Proceedings of International Workshop on Independent Component Analysis and Blind Signal Separation (2000)

    Google Scholar 

  11. Gao, J., et al.: A spectral framework for detecting inconsistency across multi-source object relationships. In: ICDM, pp. 1050–1055. IEEE (2011)

    Google Scholar 

  12. Hotelling, H.: Relations between two sets of variates. In: Kotz, S., Johnson, N.L. (eds.) Breakthroughs in Statistics. Springer Series in Statistics (Perspectives in Statistics), pp. 162–190. Springer, Heidelberg (1992). https://doi.org/10.1007/978-1-4612-4380-9_14

    Chapter  Google Scholar 

  13. Iwata, T., Yamada, M.: Multi-view anomaly detection via robust probabilistic latent variable models. In: NeurIPS, pp. 1136–1144 (2016)

    Google Scholar 

  14. Izakian, H., Pedrycz, W.: Anomaly detection in time series data using a fuzzy c-means clustering. In: IFSA/NAFIPS, pp. 1513–1518. IEEE (2013)

    Google Scholar 

  15. Ji, Y.X., et al.: Multi-view outlier detection in deep intact space. In: ICDM, pp. 1132–1137. IEEE (2019)

    Google Scholar 

  16. Li, K., Li, S., Ding, Z., Zhang, W., Fu, Y.: Latent discriminant subspace representations for multi-view outlier detection. In: AAAI (2018)

    Google Scholar 

  17. Li, S., Shao, M., Fu, Y.: Multi-view low-rank analysis for outlier detection. In: SDM, pp. 748–756. SIAM (2015)

    Google Scholar 

  18. Liu, A.Y., Lam, D.N.: Using consensus clustering for multi-view anomaly detection. In: SPW, pp. 117–124. IEEE (2012)

    Google Scholar 

  19. Liu, B., Xiao, Y., Philip, S.Y., Hao, Z., Cao, L.: An efficient approach for outlier detection with imperfect data labels. TKDE 26(7), 1602–1616 (2013)

    Google Scholar 

  20. Liu, F.T., et al.: Isolation-based anomaly detection. TKDD 6(1), 1–39 (2012)

    Article  Google Scholar 

  21. Marcos Alvarez, A., Yamada, M., Kimura, A., Iwata, T.: Clustering-based anomaly detection in multi-view data. In: CIKM, pp. 1545–1548. ACM (2013)

    Google Scholar 

  22. Na, G.S., Kim, D., Yu, H.: DILOF: Effective and memory efficient local outlier detection in data streams. In: KDD, pp. 1993–2002 (2018)

    Google Scholar 

  23. Pang, G., Cao, L., Liu, H.: Learning representations of ultrahigh-dimensional data for random distance-based outlier detection. In: KDD, pp. 2041–2050 (2018)

    Google Scholar 

  24. Pei, Y., Zaiane, O.R., Gao, Y.: An efficient reference-based approach to outlier detection in large datasets. In: ICDM, pp. 478–487. IEEE (2006)

    Google Scholar 

  25. Quadrianto, N., Lampert, C.H.: Learning multi-view neighborhood preserving projections. In: ICML (2011)

    Google Scholar 

  26. Senator, T.E., et al.: Detecting insider threats in a real corporate database of computer usage activity. In: KDD, pp. 1393–1401 (2013)

    Google Scholar 

  27. Sheng, X.R., Zhan, D.C., Lu, S., Jiang, Y.: Multi-view anomaly detection: neighborhood in locality matters. In: AAAI, vol. 33, pp. 4894–4901 (2019)

    Google Scholar 

  28. Shon, A., Grochow, K., Hertzmann, A., Rao, R.P.: Learning shared latent structure for image synthesis and robotic imitation. In: NeurIPS, pp. 1233–1240 (2006)

    Google Scholar 

  29. Spirin, N., Han, J.: Survey on web spam detection: principles and algorithms. ACM SIGKDD Explor. Newsl. 13(2), 50–64 (2012)

    Article  Google Scholar 

  30. Suo, X., et al.: Sparse canonical correlation analysis. CoRR (2017)

    Google Scholar 

  31. Tong, H., Lin, C.Y.: Non-negative residual matrix factorization with application to graph anomaly detection. In: SDM, pp. 143–153. SIAM (2011)

    Google Scholar 

  32. Wang, Z., et al.: Inductive multi-view semi-supervised anomaly detection via probabilistic modeling. In: ICBK, pp. 257–264. IEEE (2019)

    Google Scholar 

  33. Wang, Z., Lan, C.: Towards a hierarchical Bayesian model of multi-view anomaly detection. In: IJCAI (2020)

    Google Scholar 

  34. Wu, S., Wang, S.: Information-theoretic outlier detection for large-scale categorical data. TKDE 25(3), 589–602 (2011)

    Google Scholar 

  35. Xia, T., et al.: Multiview spectral embedding. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 40(6), 1438–1446 (2010)

    Article  Google Scholar 

  36. Xu, C., Tao, D., Xu, C.: A survey on multi-view learning. CoRR (2013)

    Google Scholar 

  37. Zhao, H., Fu, Y.: Dual-regularized multi-view outlier detection. In: IJCAI (2015)

    Google Scholar 

  38. Zimek, A., Gaudet, M., Campello, R.J., Sander, J.: Subsampling for efficient and effective unsupervised outlier detection ensembles. In: KDD, pp. 428–436 (2013)

    Google Scholar 

Download references

Acknowledgement

The authors would like to thank the support from Zhejiang Lab (111007-PI2001) and Zhejiang Provincial Natural Science Foundation (LZ21F030001).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, Z. et al. (2021). Learning Probabilistic Latent Structure for Outlier Detection from Multi-view Data. In: Karlapalem, K., et al. Advances in Knowledge Discovery and Data Mining. PAKDD 2021. Lecture Notes in Computer Science(), vol 12712. Springer, Cham. https://doi.org/10.1007/978-3-030-75762-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-75762-5_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-75761-8

  • Online ISBN: 978-3-030-75762-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics