Skip to main content

Sim2Real for Metagenomes: Accelerating Animal Diagnostics with Adversarial Co-training

  • Conference paper
  • First Online:
Advances in Knowledge Discovery and Data Mining (PAKDD 2021)

Abstract

Machine learning models have made great strides in many fields of research, including bioinformatics and animal diagnostics. Recently, attention has shifted to detecting pathogens from genome sequences for disease diagnostics with computational models. While there has been tremendous progress, it has primarily been driven by large amounts of annotated data, which is expensive and hard to obtain. Hence, there is a need to develop models that can leverage low-cost, synthetic genome sequences to help tackle complex metagenome classification problems for diagnostics. In this paper, we present one of the first sim2real approaches to help multi-task deep learning models learn robust feature representations from synthetic metagenome sequences and transfer the learning to predict pathogen sequences in real data. Extensive experiments show that our model can successfully leverage synthetic and real genome sequences to obtain \(80\%\) accuracy on metagenome sequence classification. Additionally, we show that our proposed model obtains 76% accuracy, with limited real metagenome sequences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aakur, S.N., Sarkar, S.: A perceptual prediction framework for self supervised event segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1197–1206 (2019)

    Google Scholar 

  2. Ashoor, H., et al.: Graph embedding and unsupervised learning predict genomic sub-compartments from hic chromatin interaction data. Nat. Commun. 11(1), 1–11 (2020)

    Article  Google Scholar 

  3. Baker, B., et al.: Emergent tool use from multi-agent autocurricula. arXiv preprint arXiv:1909.07528 (2019)

  4. Bartoszewicz, J.M., Seidel, A., Rentzsch, R., Renard, B.Y.: DeePaC: predicting pathogenic potential of novel DNA with reverse-complement neural networks. Bioinformatics 36(1), 81–89 (2020)

    Article  Google Scholar 

  5. Fiannaca, A., et al.: Deep learning models for bacteria taxonomic classification of metagenomic data. BMC Bioinform. 19(7), 198 (2018)

    Article  Google Scholar 

  6. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial examples. arXiv preprint arXiv:1412.6572 (2014)

  7. Grover, A., Leskovec, J.: node2vec: scalable feature learning for networks. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 855–864 (2016)

    Google Scholar 

  8. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  9. Huang, W., Li, L., Myers, J.R., Marth, G.T.: Art: a next-generation sequencing read simulator. Bioinformatics 28(4), 593–594 (2012)

    Article  Google Scholar 

  10. Hwang, S., Kim, C.Y., Yang, S., Kim, E., Hart, T., Marcotte, E.M., Lee, I.: Humannet v2: human gene networks for disease research. Nucleic Acids Res. 47(D1), D573–D580 (2019)

    Article  Google Scholar 

  11. Kadian, A., et al.: Sim2real predictivity: does evaluation in simulation predict real-world performance? IEEE Robot. Autom. Lett. 5(4), 6670–6677 (2020)

    Article  Google Scholar 

  12. Kang, U., Tong, H., Sun, J.: Fast random walk graph kernel. In: Proceedings of the 2012 SIAM International Conference on Data Mining, pp. 828–838. SIAM (2012)

    Google Scholar 

  13. Laver, T., et al.: Assessing the performance of the oxford nanopore technologies minion. Biomol. Detect. Quantif. 3, 1–8 (2015)

    Article  Google Scholar 

  14. Li, X., et al.: Online adaptation for consistent mesh reconstruction in the wild. In: Advances in Neural Information Processing Systems, 33 (2020)

    Google Scholar 

  15. Lin, Y., Yuan, J., Kolmogorov, M., Shen, M.W., Chaisson, M., Pevzner, P.A.: Assembly of long error-prone reads using de Bruijn graphs. Proc. Nat. Acad. Sci. 113(52), E8396–E8405 (2016)

    Article  Google Scholar 

  16. Lu, J., Yang, J., Batra, D., Parikh, D.: Hierarchical question-image co-attention for visual question answering. In: Advances in Neural Information Processing Systems, 29, pp. 289–297 (2016)

    Google Scholar 

  17. Marzoev, A., Madden, S., Kaashoek, M.F., Cafarella, M., Andreas, J.: Unnatural language processing: bridging the gap between synthetic and natural language data. arXiv preprint arXiv:2004.13645 (2020)

  18. Min, X., Zeng, W., Chen, N., Chen, T., Jiang, R.: Chromatin accessibility prediction via convolutional long short-term memory networks with k-mer embedding. Bioinform. 33(14), i92–i101 (2017)

    Article  Google Scholar 

  19. Narayanan, A., Chandramohan, M., Venkatesan, R., Chen, L., Liu, Y., Jaiswal, S.: graph2vec: learning distributed representations of graphs. arXiv preprint arXiv:1707.05005 (2017)

  20. Narayanan, S., Ramachandran, A., Aakur, S.N., Bagavathi, A.: Genome sequence classification for animal diagnostics with graph representations and deep neural networks. arXiv preprint arXiv:2007.12791 (2020)

  21. Nguyen, T.H., Chevaleyre, Y., Prifti, E., Sokolovska, N., Zucker, J.D.: Deep learning for metagenomic data: using 2D embeddings and convolutional neural networks. arXiv preprint arXiv:1712.00244 (2017)

  22. Perry, S.C., Beiko, R.G.: Distinguishing microbial genome fragments based on their composition: evolutionary and comparative genomic perspectives. Genome Biol. Evol. 2, 117–131 (2010)

    Article  Google Scholar 

  23. Sadeghi, F., Toshev, A., Jang, E., Levine, S.: Sim2Real viewpoint invariant visual servoing by recurrent control. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), (June 2018)

    Google Scholar 

  24. Sherry, S.T., et al.: dbSNP: the NCBI database of genetic variation. Nucleic Acids Res. 29(1), 308–311 (2001)

    Article  Google Scholar 

  25. Stobbe, A.H., et al.: E-probe Diagnostic Nucleic acid Analysis (edna): a theoretical approach for handling of next generation sequencing data for diagnostics. J. Microbiol. Methods 94(3), 356–366 (2013)

    Article  Google Scholar 

Download references

Acknowledgement

This research was supported in part by the US Department of Agriculture (USDA) grants AP20VSD and B000C011.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Akhilesh Ramachandran or Sathyanarayanan N. Aakur .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Indla, V. et al. (2021). Sim2Real for Metagenomes: Accelerating Animal Diagnostics with Adversarial Co-training. In: Karlapalem, K., et al. Advances in Knowledge Discovery and Data Mining. PAKDD 2021. Lecture Notes in Computer Science(), vol 12712. Springer, Cham. https://doi.org/10.1007/978-3-030-75762-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-75762-5_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-75761-8

  • Online ISBN: 978-3-030-75762-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics