Skip to main content

Autonomous Vehicle Path Prediction Using Conditional Variational Autoencoder Networks

  • Conference paper
  • First Online:
Advances in Knowledge Discovery and Data Mining (PAKDD 2021)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12712))

Included in the following conference series:

Abstract

Path prediction of autonomous vehicles is an essential requirement under any given traffic scenario. Trajectory of several agent vehicles in the vicinity of ego vehicle, at least for a short future, is needed to be predicted in order to decide upon the maneuver of the ego vehicle. We explore variational autoencoder networks to obtain multimodal trajectories of agent vehicles. In our work, we condition the network on past trajectories of agents and traffic scenes as well. The latent space representation of traffic scenes is achieved by using another variational autoencoder network. The performance of the proposed networks is compared against a residual baseline model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brännström, M., Coelingh, E., Sjöberg, J.: Model-based threat assessment for avoiding arbitrary vehicle collisions. IEEE Trans. Intell. Transp. Syst. 11(3), 658–669 (2010)

    Article  Google Scholar 

  2. Ortiz, M.G., Fritsch, J., Kummert, F., Gepperth, A.: Behavior prediction at multiple time-scales in inner-city scenarios. In: IEEE Intelligent Vehicles Symposium (IV), Baden-Baden, Germany, pp. 1068–1073 (2011)

    Google Scholar 

  3. Lawitzky, A., Althoff, D., Passenberg, C.F., Tanzmeister, G., Wollherr, D., Buss, M.: Interactive scene prediction for automotive applications. In: IEEE Intelligent Vehicles Symposium (IV), Gold Coast, QLD, Australia, pp. 1028–1033 (2013)

    Google Scholar 

  4. Oliver, N., Pentland, A.P.: Graphical models for driver behavior recognition in a smartcar. In: IEEE Intelligent Vehicles Symposium (Cat. No. 00TH8511), Dearborn, MI, USA, pp. 7–12 (2000)

    Google Scholar 

  5. Agamennoni, G., Nieto, J.I., Nebot, E.M.: Estimation of multivehicle dynamics by considering contextual information. IEEE Trans. Rob. 28(4), 855–870 (2012)

    Article  Google Scholar 

  6. Gindele, T., Brechtel, S., Dillmann, R.: A probabilistic model for estimating driver behaviors and vehicle trajectories in traffic environments. In: 13th International IEEE Conference on Intelligent Transportation Systems, Funchal, Portugal, pp. 1625–1631 (2010)

    Google Scholar 

  7. Gupta, A., Johnson, J., Fei-Fei, L., Savarese, S., Alahi, A.: Social GAN: socially acceptable trajectories with generative adversarial networks. In: IEEE Conference on Computer Vision and Pattern (2018)

    Google Scholar 

  8. Alahi, A., Goel, K., Ramanathan, V., Robicquet, A., Fei-Fei, L., Savarese, S.: Social LSTM: human trajectory prediction in crowded spaces. In: IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, pp. 961–971 (2016)

    Google Scholar 

  9. Zhan, W., La de Fortelle, A., Chen, Y.T., Chan, C.Y., Tomizuka, M.: Probabilistic prediction from planning perspective: problem formulation, representation simplification and evaluation metric. In: IEEE Intelligent Vehicles Symposium (IV), Changshu, China, pp. 1150–1156 (2018)

    Google Scholar 

  10. Mozaffari, S., Al-Jarrah, O.Y., Dianati, M., Jennings, P., Mouzakitis, A.: Deep learning-based vehicle behavior prediction for autonomous driving applications: a review. IEEE IEEE Trans. Intell. Transp. Syst. (2020). https://doi.org/10.1109/TITS.2020.3012034

  11. Houston, J., et al.: One thousand and one hours: self-driving motion prediction dataset. arXiv preprint, arXiv:2006.14480 (2020)

  12. Zyner, A., Worrall, S., Nebot, E.: A recurrent neural network solution for predicting driver intention at unsignalized intersections. IEEE Robot. Autom. Lett. 3(3), 1759–1764 (2018)

    Article  Google Scholar 

  13. Zyner, A., Worrall, S., Ward, J., Nebot, E.: Long short-term memory for driver intent prediction. In: IEEE Intelligent Vehicles Symposium (IV), Los Angeles, CA, USA, pp. 1484–1489 (2017)

    Google Scholar 

  14. Xin, L., Wang, P., Chan, C.Y., Chen, J., Li, S.E., Cheng, B.: Intention-aware long horizon trajectory pre-diction of surrounding vehicles using dual LSTM networks. In: 21st International Conference on Intelligent Transportation Systems (ITSC), Maui, HI, USA, pp. 1441–1446 (2018)

    Google Scholar 

  15. Hammer, B.: On the approximation capability of recurrent neural networks. Neurocomputing 31(1–4), 107–123 (2000)

    Article  Google Scholar 

  16. Deo, N., Trivedi, M.M.: Multi-modal trajectory prediction of surrounding vehicles with maneuver based LSTMs. In: IEEE Intelligent Vehicles Symposium (IV), Changshu, China, pp. 1179–1184 (2018)

    Google Scholar 

  17. Phillips, D.J., Wheeler, T.A., Kochenderfer, M.J.: Generalizable intention prediction of human drivers at intersections. In: IEEE Intelligent Vehicles Symposium (IV), Los Angeles, CA, USA, pp. 1665–1670 (2017)

    Google Scholar 

  18. Dai, S., Li, L., Li, Z.: Modeling vehicle interactions via modified LSTM models for trajectory prediction. IEEE Access 7, 38287–38296 (2019)

    Article  Google Scholar 

  19. Hu, Y., Zhan, W., Tomizuka, M.: Probabilistic prediction of vehicle semantic intention and motion. In: IEEE Intelligent Vehicles Symposium (IV), Changshu, China, pp. 307–313 (2018)

    Google Scholar 

  20. Cho, K., et al.: Learning phrase representations using RNN encoder-decoder for statistical machine translation. arXiv preprint, arXiv:1406.1078 (2014)

  21. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  22. Cui, H., et al.: Multi-modal trajectory predictions for autonomous driving using deep convolutional networks. In: International Conference on Robotics and Automation (ICRA), Montreal, Canada, pp. 2090–2096 (2019)

    Google Scholar 

  23. Djuric, N., et al.: Motion prediction of traffic actors for autonomous driving using deep convolutional networks. arXiv preprint, arXiv:1808.05819, 2 (2018)

  24. Lee, N., Choi, W., Vernaza, P., Choy, C.B., Torr, P.H., Chandraker, M.: Desire: distant future prediction in dynamic scenes with interacting agents. In: IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, pp. 336–345 (2017)

    Google Scholar 

  25. Luo, W., Yang, B., Urtasun, R.: Fast and furious: real time end-to-end 3D detection, tracking and motion fore-casting with a single convolutional net. In: IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, US, pp. 3569–3577 (2018)

    Google Scholar 

  26. Zhao, T., et al.: Multi-agent tensor fusion for contextual trajectory prediction. In: IEEE Conference on Computer Vision and Pattern Recognition, California, US, pp. 12126–12134 (2019)

    Google Scholar 

  27. Jagadish, D.N., Chauhan, A., Mahto, L: Deep learning techniques for autonomous vehicle path prediction. In: AAAI Workshop on AI for Urban Mobility. Vancouver, Canada (2021)

    Google Scholar 

  28. Hoermann, S., Bach, M., Dietmayer, K.: Dynamic occupancy grid prediction for urban autonomous driving: A deep learning approach with fully automatic labeling. In: IEEE International Conference on Robotics and Automation (ICRA), Brisbane, Australia, pp. 2056–2063 (2018)

    Google Scholar 

  29. Schreiber, M., Hoermann, S., Dietmayer, K.: Long-term occupancy grid prediction using recurrent neural networks. In: International Conference on Robotics and Automation (ICRA), Montreal, Canada, pp. 9299–9305 (2019)

    Google Scholar 

  30. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: IEEE conference on computer vision and pattern recognition, Las Vegas, US, pp. 770–778 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jagadish, D.N., Chauhan, A., Mahto, L. (2021). Autonomous Vehicle Path Prediction Using Conditional Variational Autoencoder Networks. In: Karlapalem, K., et al. Advances in Knowledge Discovery and Data Mining. PAKDD 2021. Lecture Notes in Computer Science(), vol 12712. Springer, Cham. https://doi.org/10.1007/978-3-030-75762-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-75762-5_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-75761-8

  • Online ISBN: 978-3-030-75762-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics