Skip to main content

Fuzzy World: A Tool Training Agent from Concept Cognitive to Logic Inference

  • Conference paper
  • First Online:
Advances in Knowledge Discovery and Data Mining (PAKDD 2021)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12712))

Included in the following conference series:

  • 3712 Accesses

Abstract

Not like many visual systems or NLP frameworks, human generally use both visual and semantic information for reasoning tasks. In this paper, we present a 3D virtual simulation learning environment Fuzzy World based on gradual learning paradigm to train visual-semantic reasoning agent for complex logic reasoning tasks. Furthermore our baseline approach employed semantic graphs and deep reinforcement learning architecture shows the significant performance over the tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Implemented at https://github.com/Luomin1993/fuzzy-world-tool.

References

  1. Kaelbling, L.P., Littman, M.L., Cassandra, A.R.: Planning and acting in partially observable stochastic domains. Artif. Intell. 101(1–2), 99–134 (1998)

    Article  MathSciNet  Google Scholar 

  2. Angluin, D.: Queries and concept learning. Mach. Learn. 2(4), 319–342 (1988)

    Article  MathSciNet  Google Scholar 

  3. Apt, K.R., Bol, R.N.: Logic programming and negation: a survey. J. Logic Program. 19(94), 9–71 (1994)

    Article  MathSciNet  Google Scholar 

  4. Apt, K.R., Emden, M.H.V.: Contributions to the theory of logic programming. J. ACM 29(3), 841–862 (1982)

    Article  MathSciNet  Google Scholar 

  5. Besold, T., et al.: Neural-symbolic learning and reasoning: a survey and interpretation

    Google Scholar 

  6. Chein, M., Mugnier, M.-L.: Graph-based knowledge representation: computational foundations of conceptual graphs. Univ. Aberdeen 13(3), 329–347 (2009)

    MATH  Google Scholar 

  7. Chen, D.L., Mooney, R.J.: Learning to interpret natural language navigation instructions from observations. In: AAAI Conference on Artificial Intelligence, AAAI 2011, San Francisco, California, USA (2011)

    Google Scholar 

  8. Chen, H., Suhr, A., Misra, D., Snavely, N., Artzi, Y.: Touchdown: natural language navigation and spatial reasoning in visual street environments

    Google Scholar 

  9. Chollet, F., et al.: Keras (2015). https://keras.io

  10. Dai, W.Z., Xu, Q.L., Yu, Y., Zhou, Z.H.: Tunneling neural perception and logic reasoning through abductive learning

    Google Scholar 

  11. Das, A., Datta, S., Gkioxari, G., Lee, S., Parikh, D., Batra, D.: Embodied question answering. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (2018)

    Google Scholar 

  12. Duda, R., Gaschnig, J., Hart, P.: Model design in the prospector consultant system for mineral exploration. Read. Artif. Intell. 334–348 (1981)

    Google Scholar 

  13. Feigenbaum, E.A., Buchanan, B.G. Lederberg, J.: Generality and problem solving: a case study using the DENDRAL program. Stanford University (1970)

    Google Scholar 

  14. Frome, A., Corrado, G.S., Shlens, J., Bengio, S., Dean, J., Ranzato, M., Mikolov, T.: DeViSE: a deep visual-semantic embedding model. In: International Conference on Neural Information Processing Systems, pp. 2121–2129 (2013)

    Google Scholar 

  15. Gordon, D., Kembhavi, A., Rastegari, M., Redmon, J., Fox, D., Farhadi, A.: IQA: visual question answering in interactive environments

    Google Scholar 

  16. Hermann, K.M., Felix Hill, S.G., Fumin Wang, P.B.: Grounded language learning in a simulated 3D world. In: NIPS Workshop (2017)

    Google Scholar 

  17. Higgins, I., et al.: SCAN: learning abstract hierarchical compositional visual concepts

    Google Scholar 

  18. Mamdani, A.S.: An experiment in linguistic synthesis with a fuzzy logic controller. Int. J. Man-Mach. Stud. 7, 1–13 (1975)

    Article  Google Scholar 

  19. Mccarthy, J.: Programs with common sense. Semant. Inf. Proces. 130(5), 403–418 (1959)

    Google Scholar 

  20. Mordatch, I.: Concept learning with energy-based models. In: ICLR Workshop (2018)

    Google Scholar 

  21. Ohlbach, H.J.: The semantic clause graph procedure - a first overview. In: Gwai-86 Und 2 Österreichische Artificial-intelligence-tagung (1986)

    Google Scholar 

  22. Regneri, M., Rohrbach, M., Wetzel, D., Thater, S., Pinkal, M.: Grounding action descriptions in videos. Trans. Assoc. Comput. Lingus 1(3), 25–36 (2013)

    Google Scholar 

  23. Shortliffe, E.H.: A rule-based computer program for advising physicians regarding antimicrobial therapy selection. Stanford University (1974)

    Google Scholar 

  24. Shridhar, M., et al.: ALFRED: a benchmark for interpreting grounded instructions for everyday tasks

    Google Scholar 

  25. Tang, J., Qu, M., Wang, M., Zhang, M., Yan, J., Mei, Q.: Line: large-scale information network embedding (2015)

    Google Scholar 

  26. Tellex, S., et al.: Understanding natural language commands for robotic navigation and mobile manipulation. In: AAAI Conference on Artificial Intelligence, pp. 1507–1514 (2011)

    Google Scholar 

  27. Tenenbaum, J.B.: Bayesian modeling of human concept learning. In: Conference on Advances in Neural Information Processing Systems II, pp. 59–65 (1998)

    Google Scholar 

  28. Torralba, X., et al.: VirtualHome: simulating household activities via programs. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (2018)

    Google Scholar 

  29. Watkins, C.J., Dayan, P.: Technical note: Q-learning. Mach. Learn. 8(3–4), 279–292 (1992)

    Article  MATH  Google Scholar 

  30. Winograd, T.: Procedures as a representation for data in a computer program for understanding natural language. Technical report, Massachusetts Institute of Technology (1971)

    Google Scholar 

  31. Yu, H., Lian, X., Zhang, H., Xu, W.: Guided feature transformation (GFT): a neural language grounding module for embodied agents

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minzhong Luo .

Editor information

Editors and Affiliations

Appendix

Appendix

1.1 6.1 Using Second Order Derivative Gradient for Cross Training Parameter

Notice that the prediction of the model \(\mathcal {P}(L_A|V, L_Q)\) is in one-hot form of space concept like:[up and down, left and right, top left and bottom right...], then the loss of last layer employed softmax cross entropy loss is \(\mathcal {L}(A_S) = -\hat{y} \odot log(f_{softmax}(A_S \odot C^{*T}))\). The next is the provement of an upper bound of \(\hat{\mathcal {L}}(A+ \alpha \varDelta A)\).

Note that the updating of parameters A takes the simple SGD: \( A^{t+1} \leftarrow A^t+\alpha \nabla _A \hat{\mathcal {L}} \).

Theorem 1

When \(\nabla ^2_A \hat{\mathcal {L}} \le MI\), we have\(\hat{\mathcal {L}}(A+ \alpha \varDelta A) \le \hat{\mathcal {L}}(A) + \gamma ||\nabla _A \hat{\mathcal {L}}||^2\).

Proof

Easy to know \(-\nabla _A \hat{\mathcal {L}}(A) = \varDelta A\), do Taylor expansion to \(\hat{\mathcal {L}}(A+ \alpha \varDelta A)\):

$$\hat{\mathcal {L}}(A+ \alpha \varDelta A) = \hat{\mathcal {L}}(A)+ \alpha \nabla _A \hat{\mathcal {L}}(A) \odot \varDelta A +\nabla ^2_A \hat{\mathcal {L}} ||\varDelta A||^2 \alpha ^2 /2 $$
$$\le \hat{\mathcal {L}}(A)+ \alpha \nabla _A \hat{\mathcal {L}} \odot (-\nabla _A \hat{\mathcal {L}}) +M||\varDelta A||^2 \alpha ^2 /2 $$
$$= \hat{\mathcal {L}}(A)+(\alpha ^2M /2 - \alpha )||\nabla _A \hat{\mathcal {L}}||^2 $$

Now let \(\gamma = \alpha ^2M /2 - \alpha \le 0\) then the below is satisfied:

$$\hat{\mathcal {L}}(A+ \alpha \varDelta A) \le \hat{\mathcal {L}}(A+ \alpha \varDelta A) +(\alpha -\alpha ^2M /2 )||\nabla _A \hat{\mathcal {L}}||^2 \le \hat{\mathcal {L}}(A)$$

.

Fig. 5.
figure 5

The Three-level Learning Paradigm: task examples from object classification to concept cognitive and logic reasoning, semantic graphs are generated and used in logic reasoning tasks.

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Luo, M. (2021). Fuzzy World: A Tool Training Agent from Concept Cognitive to Logic Inference. In: Karlapalem, K., et al. Advances in Knowledge Discovery and Data Mining. PAKDD 2021. Lecture Notes in Computer Science(), vol 12712. Springer, Cham. https://doi.org/10.1007/978-3-030-75762-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-75762-5_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-75761-8

  • Online ISBN: 978-3-030-75762-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics