Skip to main content

Renaturation and Ecosystem Services of Contaminated Urban Wastelands in France

  • Chapter
  • 168 Accesses

Part of the Cities and Nature book series (CITIES)

Abstract

In urban areas, many wastelands deriving from former industrial activities may contain degraded and polluted soils. When reconversion of these wastelands is included in a renaturation project, it opens the way to more extensive approaches in favor of biodiversity and ecosystems. The designers of a future brownfield redevelopment projects must therefore think upstream about the clean-up strategy that is least harmful to biodiversity. The stated objective is to breathe new life into degraded soils while designing a new landscape based on the dynamics and resilience of ecological systems. Choices are not easy to make insofar as projects do not have the same time horizon as the dynamics of ecological systems. While ecosystem services can structure projects, we show that the renaturation of polluted wastelands is a very complex subject because it also comes up against the complexity of urban territories and the diversity of ways of thinking, which causes tensions and sometimes incomprehension about the future of the environment that is to be built. It is therefore necessary to gather feedback from in situ experiments carried out in projects for the phytomanagement of formerly polluted wastelands.

Keywords

  • Polluted soil
  • Industrial wasteland
  • Urban nature
  • France
  • Ecosystem services
  • Stakeholders

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-74882-1_12
  • Chapter length: 22 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   119.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-74882-1
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   159.99
Price excludes VAT (USA)
Fig. 1
Fig. 2

(Source Modified after Chalmandrier et al. 2019)

Notes

  1. 1.

    For example, the function of maintaining an uncultivated wastelands ecosystem can be seen as an advantage for an ecological engineer (maintenance of natural habitats), whereas it will be considered uninteresting for some form of agronomy (no production system)—note that agroecology attempts to link the two disciplines, see below.

  2. 2.

    For example, the French working group “Risks related to collective and private urban gardens.”

  3. 3.

    National Institute of Statistics and Economic Studies.

  4. 4.

    This parameter defines the fraction of a contaminant that will actually be absorbed by a living organism.

  5. 5.

    Territorial coherence scheme.

  6. 6.

    Local urban plan (municipality scale).

  7. 7.

    Local intermunicipal urban plan.

  8. 8.

    Technosols are a new category of soils, first proposed in 2006 to the World Reference Base for Soil Resources. They can be formed by natural or anthropogenic materials in variable proportions and, above all, they are dominated or highly influenced by human activity. They can be considered as artificial anthroposols (Monsérié 2009).

  9. 9.

    One m3 of micanthus is equivalent to about 130 kg.

  10. 10.

    In France, an EPF (Établissement Public Foncier) is a public agency that acquires land for development by a third party responsible for the construction of housing, new neighborhoods or public facilities (https://www.cohesion-territoires.gouv.fr/les-etablissements-publics-fonciers-epf). The acquisition by EPF Nord-Pas-de-Calais of the 2,200 ha of slag heaps and their rights-of-way is part of the development of the regional green network and in particular that of the former mining basin, which has a large deficit of green spaces.

  11. 11.

    MisChar Project—Reconditioning of multi-contaminated soils using miscanthus biochar: ecological viability and socioeconomic value of management methods in urban and agricultural environments. https://mischar-43.webself.net/.

  12. 12.

    ADEME (Agence De l’Environnement et de la Maîtrise de l’Energie) is a French public Agency for the Environment and Energy Management.

References

  • ADEME (2014) Biodiversité et reconversion des friches urbaines polluées [Biodiversity and reconversion of polluted urban wastelands]. Connaître pour agir, Angers

    Google Scholar 

  • Aronson J, Floret C, Floc’h E, Ovalle C, Pontanier R (1993) Restoration and rehabilitation of degraded ecosystems in arid and semi-arid lands. I. A view from the south. Restor Ecol 1:8–17. https://doi.org/10.1111/j.1526-100X.1993.tb00004.x

  • Bailly E (2013) From public spaces to the landscaped spaces of the sustainable city [From public spaces to the landscaped spaces of the sustainable city. Articulo J Urban Res. https://doi.org/10.4000/articulo.2233

    CrossRef  Google Scholar 

  • Bally F (2017) Quels services écosystémiques culturels sont produits par des citoyens et quelles valeurs y associent-ils? [What cultural ecosystem services are produced by citizens and what values do they associate with them?]. Environ Urbain Spec Iss 4. https://journals.openedition.org/eue/1590

  • Barles S (1999) La ville délétère. Médecins et ingénieurs dans l’espace urbain [The city is deleterious. Doctors and engineers in the urban space]. XVIIIe-XIXe siècle. Champ Vallon, Seyssel

    Google Scholar 

  • Beck C (2020) Les sols aussi ont une histoire [Soils also have a history]. In: Mougin C, Douay F, Canavese M, Lebeau T, Rémy E (ed) Les sols urbains sont-ils cultivables? Quæ, Versailles (in press)

    Google Scholar 

  • Benayas JMR, Newton AC, Diaz A, Bullock JM (2009) Enhancement of biodiversity and ecosystem services by ecological restoration: a meta-analysis. Science 325:1121–1124. https://doi.org/10.1126/science.1172460

    CrossRef  Google Scholar 

  • Berthelin J (2018) La requalification des friches industrielles et urbaines pour préserver les sols agricoles [The requalification of industrial and urban brownfields to preserve agricultural soils]. Revue De L’académie D’agriculture 16:29–56

    Google Scholar 

  • Blanchart A, Sere G, Cherel J, Warot G, Stas M, Consalès JN, Schwartz C (2017) Contribution des sols à la production de services écosystémiques en milieu urbain – une revue [Contribution of soils to the production of ecosystem services in urban areas—a review]. Environ Urbain. https://journals.openedition.org/eue/1809

  • Bünemann EK et al (2018) Soil quality—a critical review. Soil Biol Biochem 120:105–125. https://doi.org/10.1016/j.soilbio.2018.01.030

    CrossRef  Google Scholar 

  • Carron C, Salomon Cavin J, Ruegg J (2009) La préservation du sol dans un espace de plus en plus urbanisé : vers des stratégies intégratives ? Le cas des défenseurs de la nature [Soil conservation in an increasingly urbanized space: towards integrative strategies? The case of conservationists]. Research report, IPTEH, Lausanne

    Google Scholar 

  • Chalmandrier M, Canavese M, Petit-Berghem Y, Rémy E (2017) ‘L’agriculture urbaine’ entre concept scientifique et modèle d’action. Une notion mise à l’épreuve par le jardinage et le sol urbains [Urban agriculture’ between scientific concept and action model. A concept put to the test by gardening and the ur-bath soil]. Géographie Et Cultures 101:119–138. https://doi.org/10.4000/gc.5052

    CrossRef  Google Scholar 

  • Chalmandrier M, Douay F, Louvel B, Petit-Berghem Y, Rémy E (2019) Retour d’expérience sur la mise en place d’une expérimentation sur une friche périurbaine contaminée : dépasser la notion « d’acceptabilité sociale » pour faire du sol un bien commun [Feedback on the implementation of an experiment on a contaminated peri-urban wasteland: going beyond the notion of “social acceptability” to make the soil a common good]. Topia. https://cloud.topia.fr/index.php/s/C5mC0tzm3MEQqrp#pdfviewer

  • Costanza R, d’Arge R, De Groot R, Farber S, Grasso M, Hannon B, Limburg K, Naeem S, O’Neill RV, Paruelo J (1997) The value of the world’s ecosystem services and natural capital. Nature 387:253–260. https://doi.org/10.1038/387253a0

    CrossRef  Google Scholar 

  • Cristofoli S, Mahy G (2010) Restauration écologique: contexte, contraintes et indicateurs de suivi [Ecological restoration: context, constraints and monitoring indicators]. Biotechnol Agron Soc Environ 14(1):203–211

    Google Scholar 

  • Damas O, Coulon A (2016) Créer des sols fertiles: du déchet à la végétalisation urbaine [Creating fertile soils: from waste to urban greening]. Le Moniteur, Paris

    Google Scholar 

  • Decocq C (2010) Friches industrielles et pollutions historiques, Mission d’information et d’évaluation [Industrial wastelands and historical pollution, Fact-finding and assessment mission]. Review report, Lille Métropole Communauté Urbaine, Lille

    Google Scholar 

  • Douay F, Roussel H, Pruvot C, Waterlot C (2008) Impact of a smelter closedown on metal contents of wheat cultivated in the neighbourhood. Environ Sci Pollut Res 15:162–169. https://doi.org/10.1065/espr2006.12.366

    CrossRef  Google Scholar 

  • El Khalil H, Schwartz C, El Hamiani O, Kubiniok J, Morel JL, Boularbah A (2013) Distribution of major elements and trace metals as indicators of technosolisation of urban and suburban soils. J Soils Sediments 13(3):519–530. https://doi.org/10.1007/s11368-012-0594-x

    CrossRef  Google Scholar 

  • Erkossa T, Itanna F, Stahr K (2007) Indexing soil quality: a new paradigm in soil science research. Soil Res 45(2):129–137. https://doi.org/10.1071/SR06064

    CrossRef  Google Scholar 

  • Etablissement Public Territorial (ETP) Paris-Est-Marne & Bois (2016) Plan Local d’Urbanisme [Local Urbanism Plan]. Review report, ETP, Champigny-sur-Marne

    Google Scholar 

  • France D, Ouellet C (2002) La réhabilitation des friches industrielles: un pas vers la ville viable? [Brownfield remediation: a step towards the sustainable city?]. VertigO 3(2). https://doi.org/10.4000/vertigo.3812

  • Gitton C, Verger Y, Brondeau F, Charvet R, Nold F, Branchu P, Douay F, Lamy I, Mougin C, Petit C, Rémy E (2018) L’économie circulaire: cercle vertueux ou cercle vicieux ? Le cas de l’utilisation de terres maraîchères pour aménager des espaces verts urbains [The circular economy: virtuous circle or vicious circle? The case of the use of market gardening land to develop urban green spaces]. Géocarrefour 92(2). https://doi.org/10.4000/geocarrefour.11950

  • Huyghe C (2020) Production agricole et préservation de l’environnement: est-ce possible ? [Agricultural production and preservation of the environment: is it possible?]. Science Et Pseudo-Sciences 331:46–51

    Google Scholar 

  • Joimel S et al (2016) Physico-chemical characteristics of topsoil for contrasted forest, agricultural, urban and industrial land uses in France. Sci Total Environ 555:40–47

    CrossRef  Google Scholar 

  • Kareiva P, Marvier M (2007) Conservation for people. Sci Am 297:50–57

    CrossRef  Google Scholar 

  • Larramendy S, Huet S, Micand A, Provendier D (2014) Conception écologique d’un espace public paysager – Guide méthodologique de conduite de projet [Ecological design of a landscaped public space—methodological guide for project management]. Plante & Cité, Angers

    Google Scholar 

  • Le Clec’h S, Oszwald J, Decaens T, Desjardins T, Dufour S, Grimaldi M, Jegou N, Lavelle P (2016) Mapping multiple ecosystem services indicators: toward an objective-oriented approach. Ecol Ind 69:508–521

    Google Scholar 

  • Lévêque C (2017) La biodiversité, avec ou sans l'homme? [Biodiversity, with or without man?]. Quæ, Versailles

    Google Scholar 

  • Limasset E, Fourny S, Collet JL, Michel P, Alary C, Laboudigue A (2015) Approche REFRINDD pour accompagner les acteurs de la requalification des friches industrielles potentiellement polluées dans une démarche durable: guide méthodologique et prototype d’outil d’accompagnement [REFRINDD approach to accompany the actors of the requalification of potentially polluted industrial wastelands in a sustainable approach: methodological guide and prototype support tool]. ADEME, Angers

    Google Scholar 

  • Maes J et al (2016) An indicator framework for assessing ecosystem services in support of the EU Biodiversity Strategy to 2020. Ecosyst Serv 17:14–23. https://doi.org/10.1016/j.ecoser.2015.10.023

    CrossRef  Google Scholar 

  • Mailliard T (2016) SYCTOM-Centre de tri Paris 17ème – Phase APD – Dossier de demande d’autorisation d’exploiter – Etude d’impact [Phase APD—application for authorization to operate—environmental assessment report]. NEODYNE, Paris

    Google Scholar 

  • Maris V (2014) Nature à vendre. Les limites des services écosystémiques [Nature for sale. The limits of ecosystem services]. Quæ, Versailles

    Google Scholar 

  • Masboungi A (2018) L’urbanisme des milieux vivants [Urban planning of living environments]. Parenthèses, Paris

    Google Scholar 

  • Mehdi L, Weber C, Di Pietro F, Selmi W (2012) Evolution de la place du végétal dans la ville, de l’espace vert à la trame verte [Evolution of the role of vegetation in the city, from green space to green frame]. VertigO 12(2). https://doi.org/10.4000/vertigo.12670

  • Monsérié MF (2009) Processus d’agrégation dans un technosol : contribution des constituants anthropiques (oxydes de fer, laitiers, HAP, ETM) à la formation des associations organo-minérales [Aggregation process in a technosol: contribution of anthropogenic constituents (iron oxides, slag, PAH, MTE) to the formation of organo-mineral associations]. PhD thesis, Sciences agricoles. Institut National Polytechnique de Lorraine

    Google Scholar 

  • Peuportier B (2016) Eco-design for buildings and neighbourhoods. CRC Press, Taylor and Francis Group, London

    Google Scholar 

  • RECORD (2018) Mesure de la biodiversité et évaluation des services écosystémiques des milieux restaurés. Méthodes et retours d’expériences [Measurement of biodiversity and assessment of ecosystem services in restored environments. Methods and feedback]. Final report, 17-1021/1A

    Google Scholar 

  • Seybold CA, Herrick JE, Brejda JJ (1999) Soil resilience: a fundamental componant of soil quality. Soil Sci 164(4):224–234. https://doi.org/10.1097/00010694-199904000-00002

    CrossRef  Google Scholar 

  • Society for Ecological Restoration International Science & Policy Working Group (2004) The SER International Primer on Ecological Restoration (SERI). www.ser.org & Tucson: Society for Ecological Restoration International

  • Tassin J (2020) Pour une écologie du sensible [For an ecology of the sensitive]. O. Jacob, Paris

    Google Scholar 

  • Vidal-Beaudet L (2018) Du déchet au Technosol fertile: l’approche circulaire du programme français de recherche SITERRE [From waste to fertile Technosol: the circular approach of the French research program SITERRE]. VertigO 31. https://doi.org/10.4000/vertigo.21887

  • Walter C et al (2015) Les services écosystémiques des sols: du concept à sa valorisation ? [Soil ecosystem services: from concept to valuation?]. Cahier Demeter 15:51–68

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yves Petit-Berghem .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Cite this chapter

Petit-Berghem, Y., Rémy, E., Canavese, M. (2021). Renaturation and Ecosystem Services of Contaminated Urban Wastelands in France. In: Di Pietro, F., Robert, A. (eds) Urban Wastelands. Cities and Nature. Springer, Cham. https://doi.org/10.1007/978-3-030-74882-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-74882-1_12

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-74881-4

  • Online ISBN: 978-3-030-74882-1

  • eBook Packages: HistoryHistory (R0)