We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Angular Momentum Theory | SpringerLink

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Skip to main content

Angular Momentum Theory

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Springer Handbook of Atomic, Molecular, and Optical Physics

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

  • 3854 Accesses

Abstract

Angular momentum theory is presented from the viewpoint of the group SU(1) of unimodular unitary matrices of order 2. This is the basic quantum mechanical rotation group for implementing the consequences of rotational symmetry into isolated complex physical systems and gives the structure of the angular momentum multiplets of such systems. This entails the study of representation functions of SU(2), the Lie algebra of SU(2) and copies thereof, and the associated Wigner–Clebsch–Gordan coefficients, Racah coefficients, and 3n − j coefficients, with an almost boundless set of interrelations, and presentations of the associated conceptual framework. The relationship of SU(2) to the rotation group in physical 3-space R3 is given in detail. Formulas are often given in a compendium format with brief introductions on their physical and mathematical content. A special effort is made to interrelate the material to the special functions of mathematics and to the combinatorial foundations of the subject.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Biedenharn, L.C., Louck, J.D.: In: Rota, G.-C. (ed.) Encyclopedia of Mathematics and Its Applications 8 & 9. Addison-Wesley, Reading (1981). presently by Cambridge Univ. Press

    Google Scholar 

  • Louck, J.D.: J. Math. Math. Sci. 22, 745 (1999)

    Google Scholar 

  • Schwinger, J.: On angular momentum. U. S. Atomic Energy Commission Report NYO-3071, 1952 (unpublished). In: Biedenharn, L.C., van Dam, H. (eds.) Quantum Theory of Angular Momentum, pp. 229–279. Academic Press, New York (1965)

    Google Scholar 

  • Judd, B.R., Lister, G.M.S.: J. Phys. A 20, 3159 (1987)

    ADS  MathSciNet  Google Scholar 

  • Judd, B.R.: In: Gruber, B., Millman, R.S. (eds.) Symmetries in Science, pp. 151–160. Plenum, New York (1980)

    Google Scholar 

  • Roman, S., Rota, G.-C.: Adv. Math. 27, 95 (1978)

    Google Scholar 

  • Jucys, A.P., Levinson, I.B., Vanagas, V.V.: The Theory of Angular Momentum. Israel Program for Scientific Translation, Jerusalem (1962). Translated from the Russian by A. Sen, A. R. Sen (1962)

    MATH  Google Scholar 

  • Jucys, A.P., Bandzaitis, A.A.: Angular Momentum Theory in Quantum Physics. Moksias, Vilnius (1977)

    MATH  Google Scholar 

  • Stanley, R.P.: Enumerative Combinatorics vol. 1. Cambridge Univ. Press, Cambridge (1997)

    MATH  Google Scholar 

  • Clebsch, A.: Theorie der binären algebraischen Formen. Teubner, Leipzig (1872)

    MATH  Google Scholar 

  • Louck, J.D., Chen, W.Y.C., Galbraith, H.W.: In: Lulek, T., Lulek, B., Wal, A. (eds.) Symmetry, Structural Properties of Condensed Matter, pp. 112–137. World Scientific, Singapore (1999)

    Google Scholar 

  • Chen, W.Y.C., Louck, J.D.: Adv. Math. 140, 207 (1998)

    MathSciNet  Google Scholar 

  • MacMahon, P.A.: Combinatory Analysis. Cambridge Univ. Press, Cambridge (1960). Originally published in two volumes by Cambridge Univ. Press, Cambridge (1915, 1916)

    MATH  Google Scholar 

  • Louck, J.D.: Adv. Appl. Math. 17, 143 (1996)

    Google Scholar 

  • Molien, T.: Über die Invarianten der linearen Substitutionsgruppen. Sitzungsber. König. Preuss. Akad. Wiss. 52, 1152 (1897)

    MATH  Google Scholar 

  • Michel, L., Zhilinskii, B.I.: Phys. Rep. 341, 11 (2001)

    ADS  MathSciNet  Google Scholar 

  • Wei, L.: Comput. Phys. Commun. 120, 222 (1999)

    ADS  Google Scholar 

  • Edmonds, A.R.: Angular Momentum in Quantum Mechanics. Princeton Univ. Press, Princeton (1957)

    MATH  Google Scholar 

  • Cartan, E.: Thesis. Paris, Nony (1894). Ouevres Complète, Part 1, pp. 137–287. Gauthier-Villars, Paris (1952)

    Google Scholar 

  • Weyl, H.: Gruppentheorie und Quantenmechanik. Hirzel, Leipzig (1928). Translated by H. P. Robertson as: The Theory of Groups and Quantum Mechanics. Methuen, London (1931)

    MATH  Google Scholar 

  • Dirac, P.A.M.: The Principles of Quantum Mechanics, 4th edn. Oxford Univ. Press, London (1958)

    MATH  Google Scholar 

  • Born, M., Jordan, P.: Elementare Quantenmechanik. Springer, Berlin, Heidelberg (1930)

    MATH  Google Scholar 

  • Casimir, H.B.G.: Thesis, University of Leyden. Wolters, Groningen (1931). Koninkl. Ned. Akad. Wetenschap Proc. 34, 844 (1931)

    Google Scholar 

  • van der Waerden, B.L.: Die gruppentheoretische Methode in der Quantenmechanik. Springer, Berlin, Heidelberg (1932)

    MATH  Google Scholar 

  • Pauli, W.: In: Geiger, H., Scheel, K. (eds.) Handbuch der Physik, vol. 24, pp. 83–272. Springer, Berlin, Heidelberg (1933). Chap. 1. Later published in: Encyclopedia of Physics, vol. 5, Part 1, pp. 45, 46, ed. by S. Flügge. Springer, Berlin, Heidelberg (1958)

    Google Scholar 

  • Weyl, H.: The Structure and Representations of Continuous Groups. Lectures at the Institute for Advanced Study, Princeton. (1935). (unpublished) notes by R. Brauer

    Google Scholar 

  • Condon, E.U., Shortley, G.H.: The Theory of Atomic Spectra. Cambridge Univ. Press, London (1935)

    MATH  Google Scholar 

  • Kramers, H.A.: Quantum Mechanics. North-Holland, Amsterdam (1957). Translation by D. ter Haar of Kramer's monograph published in: Hand- und Jahrbuch der chemischen Physik (1937)

    MATH  Google Scholar 

  • Szegö, G.: Orthogonal Polynomials. Edwards, Ann Arbor (1948)

    MATH  Google Scholar 

  • Gel'fand, I.M., Shapiro, Z.Y.: Am. Math. Soc. Transl. 2, 207 (1956)

    Google Scholar 

  • Erdelyi, A., Magnus, W., Oberhettinger, F., Tricomi, G.F.: Higher Transcendental Functions vol. 1. McGraw-Hill, New York (1953)

    MATH  Google Scholar 

  • Wigner, E.P.: Application of Group Theory to the Special Functions of Mathematical Physics. Lecture notes. (1955). (unpublished)

    Google Scholar 

  • Brinkman, H.C.: Applications of Spinor Invariants in Atomic Physics. North-Holland, Amsterdam (1956)

    Google Scholar 

  • Rose, M.E.: Elementary Theory of Angular Momentum. Wiley, New York (1957)

    MATH  Google Scholar 

  • Fano, U., Racah, G.: Irreducible Tensorial Sets. Academic Press, New York (1959)

    Google Scholar 

  • Wigner, E.P.: Group Theory and Its Application to the Quantum Mechanics of Atomic Spectra. Academic Press, New York (1959). Translation from the 1931 German edition by J. J. Griffin

    MATH  Google Scholar 

  • Slater, J.C.: Quantum Theory of Atomic Structure vol. 2. McGraw-Hill, New York (1960)

    MATH  Google Scholar 

  • Heine, V.: Group Theory and Quantum Mechanics; An Introduction to Its Present Usage. Pergamon, New York (1960)

    MATH  Google Scholar 

  • Sharp, W.T.: Thesis. Princeton University. (1960). issued as Report AECL-1098, Atomic Energy of Canada, Chalk River, Ontario (1960)

    Google Scholar 

  • Brink, D.M., Satchler, G.R.: Angular Momentum. Oxford Univ. Press, London (1962)

    MATH  Google Scholar 

  • Hamermesh, M.: Group Theory and Its Applications to Physical Problems. Addison-Wesley, Reading (1962)

    MATH  Google Scholar 

  • Mackey, G.W.: The Mathematical Foundations of Quantum Mechanics. Benjamin, New York (1963)

    MATH  Google Scholar 

  • de-Shalit, A., Talmi, I.: Nuclear Shell Theory. Pure and Applied Physics Series, vol. 14. Academic Press, New York (1963)

    Google Scholar 

  • Feynman, R.P.: Feynman Lectures on Physics. Addison-Wesley, Reading (1963). Chap. 34

    Google Scholar 

  • Judd, R.: Operator Techniques in Atomic Spectroscopy. McGraw-Hill, New York (1963)

    Google Scholar 

  • Davydov, A.S.: Quantum Mechanics. Pergamon/Addison-Wesley, London/Reading (1965). Translation from the Russian of: Kvantovaya Mekhanika. Moscow (1963), with revisions and additions by D. ter Haar

    Google Scholar 

  • Gel'fand, I.M., Minlos, R.A., Shapiro, Z.Y.: Representations of the Rotation and Lorentz Groups and Their Applications. Macmillan, New York (1963). Translated from the Russian by G. Cummins and T. Boddington

    MATH  Google Scholar 

  • Hagedorn, R.: Selected Topics on Scattering Theory: Part IV, Angular Momentum. Lectures given at the Max-Planck-Institut für Physik, Munich. (1963)

    Google Scholar 

  • Naimark, M.A.: Linear Representations of the Lorentz Group. Pergamon, New York (1964)

    Google Scholar 

  • Biedenharn, L.C., van Dam, H.: Quantum Theory of Angular Momentum. Academic Press, New York (1965)

    Google Scholar 

  • van der Waerden, B.L.: Sources of Quantum Mechanics. North-Holland, Amsterdam (1967)

    MATH  Google Scholar 

  • Judd, B.R.: Second Quantization and Atomic Spectroscopy. Johns Hopkins Press, Baltimore (1967)

    Google Scholar 

  • Vilenkin, N.: Special Functions and the Theory of Group Representations vol. 22. Amer. Math. Soc., Providence (1968). Translated from the Russian

    MATH  Google Scholar 

  • Talman, J.D.: Special Functions: A Group Theoretic Approach. Benjamin, New York (1968). Based on E. P. Wigner's lectures (see Schwinger, 1952)

    MATH  Google Scholar 

  • Wybourne, B.G.: Symmetry Principles and Atomic Spectroscopy. Wiley, New York (1970)

    Google Scholar 

  • El Baz, E.A., Castel, B.: Graphical Methods of Spin Algebras in Atomic, Nuclear, and Particle Physics. Dekker, New York (1972)

    Google Scholar 

  • Gilmore, R.: Lie Groups, Lie Algebras, and Some of Their Applications. Wiley, New York (1974)

    MATH  Google Scholar 

  • Varshalovich, D.A., Moskalev, A.N., Khersonskii, V.K.: Quantum Theory of Angular Momentum. Nauka, Leningrad (1975). (in Russian)

    Google Scholar 

  • Cowan, R.D.: The Theory of Atomic Structure and Spectra. Univ. Calif. Press, Berkeley (1981)

    Google Scholar 

  • Zare, R.N.: Angular Momentum. Wiley, New York (1988)

    Google Scholar 

  • Andrews, G.E., Askey, R.A., Roy, R.: Special functions. In: Rota, G.-C. (ed.) Encyclopedia of Mathematics and Its Applications, vol. 71, Cambridge Univ. Press, Cambridge (1999)

    Google Scholar 

  • Gordan, P.: Über das Formensystem binärer Formen. Teubner, Leipzig (1875)

    MATH  Google Scholar 

  • Heisenberg, W.: Z. Phys. 33, 879 (1925)

    ADS  Google Scholar 

  • Born, M., Jordan, P.: Z. Phys. 34, 858 (1925)

    ADS  Google Scholar 

  • Dirac, P.A.M.: Proc. R. Soc. A 109, 642 (1925)

    ADS  Google Scholar 

  • Born, M., Heisenberg, W., Jordan, P.: Z. Phys. 35, 557 (1926)

    ADS  Google Scholar 

  • Pauli, W.: Z. Phys. 36, 336 (1926)

    ADS  Google Scholar 

  • Wigner, E.P.: Z. Phys. 43, 624 (1927)

    ADS  Google Scholar 

  • Wigner, E.P.: Z. Phys. 45, 601 (1927)

    ADS  Google Scholar 

  • Eckart, C.: Rev. Mod. Phys. 2, 305 (1930)

    ADS  Google Scholar 

  • Wigner, E.P.: Göttinger Nachr. Math.-Phys. 1932, 546 (1932)

    Google Scholar 

  • Van Vleck, J.H.: Phys. Rev. 47, 487 (1935)

    ADS  Google Scholar 

  • Wigner, E.P.: On the matrices which reduce the Kronecker products of representations of S. R. groups, 1940 (unpublished). In: Biedenharn, L.C., van Dam, H. (eds.) Quantum Theory of Angular Momentum, pp. 87–133. Academic Press, New York (1965)

    Google Scholar 

  • Racah, G.: Phys. Rev. 62, 438 (1942)

    ADS  Google Scholar 

  • Racah, G.: Phys. Rev. 63, 367 (1943)

    ADS  Google Scholar 

  • Gel'fand, I.M., Tseitlin, M.L.: Dokl. Akad. Nauk. SSSR 71, 825 (1950)

    Google Scholar 

  • Van Vleck, J.H.: Rev. Mod. Phys. 23, 213 (1951)

    ADS  Google Scholar 

  • Jahn, H.A.: Proc. R. Soc. A 205, 192 (1951)

    ADS  Google Scholar 

  • Biedenharn, L.C., Blatt, J.M., Rose, M.E.: Rev. Mod. Phys. 24, 249 (1952)

    ADS  Google Scholar 

  • Biedenharn, L.C.: Notes on Multipole Fields. Lecture notes at Yale University, New Haven. (1952). (unpublished)

    Google Scholar 

  • Elliott, J.P.: Proc. R. Soc. A 218, 345 (1953)

    ADS  Google Scholar 

  • Biedenharn, L.C.: J. Math. Phys. 31, 287 (1953)

    MathSciNet  Google Scholar 

  • Jahn, H.A., Hope, J.: Phys. Rev. 93, 318 (1954)

    ADS  Google Scholar 

  • Regge, T.: Nuovo Cimento 10, 544 (1958)

    Google Scholar 

  • Regge, T.: Nuovo Cimento 11, 116 (1959)

    Google Scholar 

  • Bargmann, V.: Commun. Pure Appl. Math. 14, 187 (1961)

    Google Scholar 

  • Giovannini, A., Smith, D.A.: In: Block, F., Cohen, S.G., de-Shalit, A., Sambursky, S., Talmi, I. (eds.) Spectroscopic and Group Theoretic Methods in Physics (Racah Memorial Volume), pp. 89–97. Wiley–Interscience, New York (1968)

    Google Scholar 

  • Bargmann, V.: Rev. Mod. Phys. 34, 829 (1962)

    ADS  Google Scholar 

  • Michel, L.: In: Bargmann, V. (ed.) Lecture Notes in Physics: Group Representations in Mathematics and Physics, Battelle Recontres, pp. 36–143. Springer, Berlin, Heidelberg (1970)

    Google Scholar 

  • Wu, A.C.T.: J. Math. Phys. 13, 84 (1972)

    ADS  Google Scholar 

  • Smorodinskii, Y.A., Shelepin, L.A.: Sov. Phys. Usp. 15, 1 (1972)

    ADS  Google Scholar 

  • Smorodinskii, Y.A., Shelepin, L.A.: Usp. Fiz. Nauk 106, 3 (1972)

    Google Scholar 

  • Shelepin, L.A.: Invariant algebraic methods and symmetric analysis of cooperative phenomena. In: Skobel'tsyn, D.V. (ed.) Group-Theoretical Methods in Physics, pp. 1–109. Fourth Internat. Collog., Nijmegen (1975). A special research report translated from the Russian by Consultants Bureau, New York, London.

    Google Scholar 

  • Smorodinskii, Y.A.: Sov. Phys. JETP 48, 403 (1978)

    ADS  Google Scholar 

  • Gel'fand, I.M., Graev, M.I.: Dokl. Math. 33, 336 (2000). Transl. from Dokl. Akad. Nauk 372, 151 (2000)

    Google Scholar 

Download references

Acknowledgements

This contribution on angular momentum theory is dedicated to Lawrence C. Biedenharn, whose tireless and continuing efforts in bringing understanding and structure to this complex subject is everywhere imprinted.

We also wish to acknowledge the many contributions of H. W. Galbraith and W. Y. C. Chen in sorting out the significance of results found in Schwinger 3 . The Supplement is dedicated to the memory of Brian G. Wybourne, whose contributions to symmetry techniques and angular momentum theory, both abstract and applied to physical systems, was monumental.

The author expresses his gratitude to Debi Erpenbeck, whose artful mastery of TeX and scrupulous attention to detail allowed the numerous complex relations to be displayed in two-column format.

Author's note. It is quite impossible to attribute credits fairly in this subject because of its diverse origins across all areas of physics, chemistry, and mathematics. Any attempt to do so would likely be as misleading as it is informative. Most of the material is rooted in the very foundations of quantum theory itself, and the physical problems it addresses, making it still more difficult to assess unambiguous credit of ideas. Pragmatically, there is also the problem of confidence in the detailed correctness of complicated relationships, which prejudices one to cite those relationships personally checked. This accounts for the heavy use of formulas from 1 , which is, by far, the most often used source. But most of that material itself is derived from other primary sources, and an inadequate attempt was made there to indicate the broad base of origins. While one might expect to find in a reference book a comprehensive list of credits for most of the formulas, it has been necessary to weigh the relative merits of presenting a mature subject from a viewpoint of conceptual unity versus credits for individual contributions. The first position was adopted. Nonetheless, there is an obligation to indicate the origins of a subject, noting those works that have been most influential in its developments. The list of textbooks and seminal articles given in the references is intended to serve this purpose, however inadequately.

Excerpts and Fig. 2.1 are reprinted from Biedenharn and Louck 1 with permission of Cambridge University Press. Tables 2.22.4 have been adapted from Edmonds 18 by permission of Princeton University Press. Thanks are given for this cooperation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James D. Louck .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this chapter

Cite this chapter

Louck, J.D. (2023). Angular Momentum Theory. In: Drake, G.W.F. (eds) Springer Handbook of Atomic, Molecular, and Optical Physics. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-030-73893-8_2

Download citation

Publish with us

Policies and ethics