Skip to main content

Runtime Analysis of the \((\mu + 1)\)-EA on the Dynamic BinVal Function

  • Conference paper
  • First Online:
Evolutionary Computation in Combinatorial Optimization (EvoCOP 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12692))

Abstract

We study evolutionary algorithms in a dynamic setting, where for each generation a different fitness function is chosen, and selection is performed with respect to the current fitness function. Specifically, we consider Dynamic BinVal, in which the fitness functions for each generation is given by the linear function BinVal, but in each generation the order of bits is randomly permuted. For the \((1 + 1)\)-EA it was known that there is an efficiency threshold \(c_0\) for the mutation parameter, at which the runtime switches from quasilinear to exponential. Previous empirical evidence suggested that for larger population size \(\mu \), the threshold may increase. We prove rigorously that this is at least the case in an \(\varepsilon \)-neighborhood around the optimum: the threshold of the \((\mu + 1)\)-EA becomes arbitrarily large if the \(\mu \) is chosen large enough.

However, the most surprising result is obtained by a second order analysis for \(\mu =2\): the threshold increases with increasing proximity to the optimum. In particular, the hardest region for optimization is not around the optimum. (Extended Abstract. A full version is available on arxiv at [17].)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    By this we mean that selection is performed according to the current fitness function as in [8]. I.e., all individuals from parent and offspring population are compared with respect to the same fitness function. Other versions exist, e.g. [4] studies the same problem as [8] without re-evaluations.

  2. 2.

    They argued that it might either be called noisy linear functions or dynamic linear functions, but we prefer the term dynamic.

  3. 3.

    The o(1) term is needed since we do not make assumptions about \(\varepsilon \). If we assumed that \(\varepsilon =\varepsilon (n)\) goes to zero sufficiently slowly, we could swallow the o(1) into \(O(\varepsilon ^2)\).

  4. 4.

    Here we use the convention that if an offspring is identical to the parent, and they have lowest fitness in the population, then the offspring is rejected. Since the outcome of ejecting offspring or parent is the same, this convention does not change the course of the algorithm.

References

  1. Colin, S., Doerr, B., Férey, G.: Monotonic functions in EC: anything but monotone! In: Genetic and Evolutionary Computation Conference (GECCO), pp. 753–760. ACM (2014)

    Google Scholar 

  2. Dang-Nhu, R., Dardinier, T., Doerr, B., Izacard, G., Nogneng, D.: A new analysis method for evolutionary optimization of dynamic and noisy objective functions. In: Genetic and Evolutionary Computation Conference (GECCO), pp. 1467–1474. ACM (2018)

    Google Scholar 

  3. Doerr, B., Goldberg, L.A.: Adaptive drift analysis. Algorithmica 65(1), 224–250 (2013). https://doi.org/10.1007/s00453-011-9585-3

    Article  MathSciNet  MATH  Google Scholar 

  4. Doerr, B., Hota, A., Kötzing, T.: Ants easily solve stochastic shortest path problems. In: Genetic and Evolutionary Computation Conference (GECCO), pp. 17–24. ACM (2012)

    Google Scholar 

  5. Doerr, B., Jansen, T., Sudholt, D., Winzen, C., Zarges, C.: Mutation rate matters even when optimizing monotonic functions. Evol. Comput. 21(1), 1–27 (2013)

    Article  Google Scholar 

  6. Doerr, B., Johannsen, D., Winzen, C.: Multiplicative drift analysis. Algorithmica 64(4), 673–697 (2012). https://doi.org/10.1007/s00453-012-9622-x

    Article  MathSciNet  MATH  Google Scholar 

  7. Droste, S.: Analysis of the \((1+ 1)\) EA for a dynamically changing OneMax-variant. In: Congress on Evolutionary Computation (CEC), vol. 1, pp. 55–60. IEEE (2002)

    Google Scholar 

  8. Horoba, C., Sudholt, D.: Ant colony optimization for stochastic shortest path problems. In: Genetic and Evolutionary Computation Conference (GECCO), pp. 1465–1472. ACM (2010)

    Google Scholar 

  9. Jansen, T.: On the brittleness of evolutionary algorithms. In: Stephens, C.R., Toussaint, M., Whitley, D., Stadler, P.F. (eds.) FOGA 2007. LNCS, vol. 4436, pp. 54–69. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73482-6_4

    Chapter  MATH  Google Scholar 

  10. Kötzing, T., Lissovoi, A., Witt, C.: (1+1) EA on generalized dynamic OneMax. In: Foundations of Genetic Algorithms (FOGA), pp. 40–51. Springer (2015). https://dblp.org/rec/conf/foga/KotzingLW15.html?view=bibtex

  11. Kötzing, T., Molter, H.: ACO beats EA on a dynamic pseudo-Boolean function. In: Coello, C.A.C., Cutello, V., Deb, K., Forrest, S., Nicosia, G., Pavone, M. (eds.) PPSN 2012. LNCS, vol. 7491, pp. 113–122. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32937-1_12

    Chapter  Google Scholar 

  12. Lengler, J., Steger, A.: Drift analysis and evolutionary algorithms revisited. Comb. Probab. Comput. 27(4), 643–666 (2018)

    Article  MathSciNet  Google Scholar 

  13. Lengler, J.: A general dichotomy of evolutionary algorithms on monotone functions. IEEE Trans. Evol. Comput. 24(6), 995–1009 (2019)

    Article  Google Scholar 

  14. Lengler, J.: Drift analysis. Theory of Evolutionary Computation. NCS, pp. 89–131. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-29414-4_2

    Chapter  Google Scholar 

  15. Lengler, J., Meier, J.: Large population sizes and crossover help in dynamic environments. In: Bäck, T., et al. (eds.) PPSN 2020. LNCS, vol. 12269, pp. 610–622. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58112-1_42

    Chapter  Google Scholar 

  16. Lengler, J., Meier, J.: Large population sizes and crossover help in dynamic environments, full version. arXiv preprint. http://arxiv.org/abs/2004.09949 (2020)

  17. Lengler, J., Riedi, S.: Runtime analysis of the \((\mu +1)\)-EA on the dynamic BinVal function, full version. arXiv preprint. http://arxiv.org/abs/2010.13428 (2020)

  18. Lengler, J., Schaller, U.: The (1+1)-EA on noisy linear functions with random positive weights. In: Symposium Series on Computational Intelligence (SSCI), pp. 712–719. IEEE (2018)

    Google Scholar 

  19. Lengler, J., Zou, X.: Exponential slowdown for larger populations: the (\(\mu \)+1)-EA on monotone functions. In: Foundations of Genetic Algorithms (FOGA), pp. 87–101. ACM (2019)

    Google Scholar 

  20. Lissovoi, A., Witt, C.: MMAS versus population-based EA on a family of dynamic fitness functions. Algorithmica 75(3), 554–576 (2016). https://doi.org/10.1007/s00453-015-9975-z

    Article  MathSciNet  MATH  Google Scholar 

  21. Lissovoi, A., Witt, C.: A runtime analysis of parallel evolutionary algorithms in dynamic optimization. Algorithmica 78(2), 641–659 (2016). https://doi.org/10.1007/s00453-016-0262-4

    Article  MathSciNet  MATH  Google Scholar 

  22. Lissovoi, A., Witt, C.: The impact of a sparse migration topology on the runtime of island models in dynamic optimization. Algorithmica 80(5), 1634–1657 (2018). https://doi.org/10.1007/s00453-017-0377-2

    Article  MathSciNet  MATH  Google Scholar 

  23. Neumann, F., Pourhassan, M., Roostapour, V.: Analysis of evolutionary algorithms in dynamic and stochastic environments. Theory of Evolutionary Computation. NCS, pp. 323–357. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-29414-4_7

    Chapter  MATH  Google Scholar 

  24. Neumann, F., Witt, C.: On the runtime of randomized local search and simple evolutionary algorithms for dynamic makespan scheduling. In: International Joint Conference on Artificial Intelligence (IJCAI), pp. 3742–3748. AAAI Press (2015)

    Google Scholar 

  25. Pourhassan, M., Gao, W., Neumann, F.: Maintaining 2-approximations for the dynamic vertex cover problem using evolutionary algorithms. In: Genetic and Evolutionary Computation Conference (GECCO), pp. 903–910. ACM (2015)

    Google Scholar 

  26. Shi, F., Schirneck, M., Friedrich, T., Kötzing, T., Neumann, F.: Reoptimization time analysis of evolutionary algorithms on linear functions under dynamic uniform constraints. Algorithmica 81(2), 828–857 (2019). https://doi.org/10.1007/s00453-018-0451-4

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes Lengler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lengler, J., Riedi, S. (2021). Runtime Analysis of the \((\mu + 1)\)-EA on the Dynamic BinVal Function. In: Zarges, C., Verel, S. (eds) Evolutionary Computation in Combinatorial Optimization. EvoCOP 2021. Lecture Notes in Computer Science(), vol 12692. Springer, Cham. https://doi.org/10.1007/978-3-030-72904-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-72904-2_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-72903-5

  • Online ISBN: 978-3-030-72904-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics