Skip to main content

An Improvement Heuristic Based on Variable Neighborhood Search for a Dynamic Orienteering Problem

  • Conference paper
  • First Online:
Evolutionary Computation in Combinatorial Optimization (EvoCOP 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12692))

Abstract

The Dynamic Orienteering Problem (DOP) is studied where nodes change their value over time. An improvement heuristic that is based on Variable Neighborhood Search is proposed for the DOP. The new heuristic is experimentally compared with two heuristics that are based on state-of-the-art algorithms for the static Orienteering Problem. For the experiments several benchmark instances are used as well as instances that are generated from existing road networks. The results show that the new heuristic outperforms the other heuristics with respect to several evaluation criteria and different measures for run time. An additional experiment shows that the new heuristic can be easily adapted to become a standalone algorithm that does not need given initial solutions. The standalone version obtains better results than two state-of-the-art algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abbaspour, R.A., Samadzadegan, F.: Time-dependent personal tour planning and scheduling in metropolises. Expert Syst. Appl. 38(10), 12439–12452 (2011)

    Article  Google Scholar 

  2. Angelelli, E., Archetti, C., Filippi, C., Vindigni, M.: The probabilistic orienteering problem. Comput. Oper. Res. 81, 269–281 (2017)

    Article  MathSciNet  Google Scholar 

  3. Applegate, D., Cook, W., Rohe, A.: Chained Lin-Kernighan for large traveling salesman problems. INFORMS J. Comput. 15, 82–92 (2003)

    Article  MathSciNet  Google Scholar 

  4. Archetti, C., Speranza, M.G., Vigo, D.: Vehicle routing problems with profits. In: Toth, P., Vigo, D. (eds.) Vehicle Routing, pp. 273–297 (2014)

    Google Scholar 

  5. Campos, V., Marti, R., Sánchez-Oro Calvo, J., Duarte, A.: Grasp with path relinking for the orienteering problem. J. Oper. Res. Soc. 65, 1800–1813 (2014)

    Article  Google Scholar 

  6. Cook, W., Applegate, D., Bixby, R., Chvátal, V.: Concorde TSP solver (2005). http://www.math.uwaterloo.ca/tsp/concorde/downloads/downloads.htm

  7. Erkut, E., Zhang, J.: The maximum collection problem with time-dependent rewards. Naval Res. Logist. 43(5), 749–763 (1996)

    Article  MathSciNet  Google Scholar 

  8. Fomin, F.V., Lingas, A.: Approximation algorithms for time-dependent orienteering. Inf. Process. Lett. 83(2), 57–62 (2002)

    Article  MathSciNet  Google Scholar 

  9. Gavalas, D., Konstantopoulos, C., Pantziou, G.: A survey on algorithmic approaches for solving tourist trip design problems. J. Heuristics 20(3), 291–328 (2014)

    Article  Google Scholar 

  10. Golden, B., Levy, L., Vohra, R.: The orienteering problem. Naval Res. Logist. 34, 307–318 (1987)

    Article  Google Scholar 

  11. Gunawan, A., Lau, H.C., Vansteenwegen, P.: Orienteering problem: a survey of recent variants, solution approaches and applications. Eur. J. Oper. Res. 255(2), 315–332 (2016)

    Article  MathSciNet  Google Scholar 

  12. Hansen, P., Mladenović, N., Pérez, J.M.: Variable neighbourhood search: methods and applications. Ann. Oper. Res. 175, 367–407 (2010). https://doi.org/10.1007/s10479-009-0657-6

    Article  MathSciNet  MATH  Google Scholar 

  13. İlhan, T., Iravani, S.M.R., Daskin, M.S.: The orienteering problem with stochastic profits. IIE Trans. 40(4), 406–421 (2008)

    Article  Google Scholar 

  14. INRIX: Durchschnittliche Geschwindigkeit* im Automobilverkehr in ausgewählten deutschen Städten im Jahr 2018 (in Meilen pro Stunde). Statista (2019). https://de.statista.com/statistik/daten/studie/994676/umfrage/innerstaedtische-durchschnittsgeschwindigkeit-im-autoverkehr-in-deutschen-staedten/

  15. Kara, I., Bicakci, P.S., Derya, T.: New formulations for the orienteering problem. In: 3rd Global Conference on Business, Economics, Management and Tourism, vol. 39, pp. 849–854 (2016)

    Google Scholar 

  16. Karlin, M., Heikkilä, J.: OSM-graph-parser (2017). https://github.com/rovaniemi/osm-graph-parser

  17. Kataoka, S., Morito, S.: An algorithm for single constraint maximum collection problem. J. Oper. Res. Soc. Jpn. 31(4), 515–560 (1988)

    MathSciNet  MATH  Google Scholar 

  18. Keshtkaran, M., Ziarati, K.: An efficient evolutionary algorithm for the orienteering problem. J. Heuristics 22, 699–726 (2016)

    Article  Google Scholar 

  19. Kobeaga, G., Merino, M., Lozano, J.A.: An efficient evolutionary algorithm for the orienteering problem. Comput. Oper. Res. 90, 42–59 (2018)

    Article  MathSciNet  Google Scholar 

  20. Kobeaga, G., Merino, M., Lozano, J.A.: OPLib: test instances for the orienteering problem (2018). https://github.com/bcamath-ds/OPLib/tree/master/instances

  21. Laporte, G., Martello, S.: The selective travelling salesman problem. Discrete Appl. Math. 26(2), 193–207 (1990)

    Article  MathSciNet  Google Scholar 

  22. Le, H.T.: DynamicOrienteeringAlgorithms (2020). https://github.com/L-HT/DynamicOrienteeringAlgorithms/

  23. Mann, M., Zion, B., Rubinstein, D., Linker, R., Shmulevich, I.: The orienteering problem with time windows applied to robotic melon harvesting. J. Optim. Theory Appl. 168, 246–267 (2015). https://doi.org/10.1007/s10957-015-0767-z

    Article  MathSciNet  MATH  Google Scholar 

  24. Marinakis, Y., Politis, M., Marinaki, M., Matsatsinis, N.: A memetic-GRASP algorithm for the solution of the orienteering problem. In: Le Thi, H.A., Pham Dinh, T., Nguyen, N.T. (eds.) Modelling, Computation and Optimization in Information Systems and Management Sciences. AISC, vol. 360, pp. 105–116. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-18167-7_10

    Chapter  Google Scholar 

  25. Nagarajan, V., Ravi, R.: The directed orienteering problem. Algorithmica 60, 1017–1030 (2011). https://doi.org/10.1007/s00453-011-9509-2

    Article  MathSciNet  MATH  Google Scholar 

  26. Nguyen, T.T., Yang, S., Branke, J.: Evolutionary dynamic optimization: a survey of the state of the art. Swarm Evol. Comput. 6, 1–24 (2012)

    Article  Google Scholar 

  27. OpenStreetMap contributors: planet dump (2020). https://planet.osm.org. https://www.openstreetmap.org

  28. Ostrowski, K., Karbowska-Chilinska, J., Koszelew, J., Zabielski, P.: Evolution-inspired local improvement algorithm solving orienteering problem. Ann. Oper. Res. 253, 519–543 (2017). https://doi.org/10.1007/s10479-016-2278-1

    Article  MathSciNet  MATH  Google Scholar 

  29. Schilde, M., Doerner, K.F., Hartl, R.F., Kiechle, G.: Metaheuristics for the bi-objective orienteering problem. Swarm Intell. 3, 179–201 (2009). https://doi.org/10.1007/s11721-009-0029-5

    Article  Google Scholar 

  30. Schneider, W.: Bbbike.org (2020). https://download.bbbike.org/osm/

  31. Tsiligiridis, T.: Heuristic methods applied to orienteering. J. Oper. Res. Soc. 35, 797–809 (1984). https://doi.org/10.1057/jors.1984.162

    Article  Google Scholar 

  32. Vansteenwegen, P., Souffriau, W., Berghe, G.V., Oudheusden, D.V.: The city trip planner: an expert system for tourists. Expert Syst. Appl. 38(6), 6540–6546 (2011)

    Article  Google Scholar 

  33. Wang, X., Golden, B.L., Wasil, E.A.: Using a genetic algorithm to solve the generalized orienteering problem. In: Golden, B., Raghavan, S., Wasil, E. (eds.) The Vehicle Routing Problem: Latest Advances and New Challenges. ORCS, vol. 43, pp. 263–274. Springer, Boston (2008). https://doi.org/10.1007/978-0-387-77778-8_12

    Chapter  MATH  Google Scholar 

  34. Weise, T., et al.: Benchmarking optimization algorithms: an open source framework for the traveling salesman problem. IEEE Comput. Intell. Mag. 9(3), 40–52 (2014)

    Article  Google Scholar 

  35. Your Europe: Road transportation workers (2020). https://europa.eu/youreurope/business/human-resources/transport-sector-workers/road-transportation-workers

  36. Zhang, S., Ohlmann, J.W., Thomas, B.W.: Dynamic orienteering on a network of queues. Transp. Sci. 52(3), 691–706 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) - project number 392050753.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hoang Thanh Le .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Le, H.T., Middendorf, M., Shi, Y. (2021). An Improvement Heuristic Based on Variable Neighborhood Search for a Dynamic Orienteering Problem. In: Zarges, C., Verel, S. (eds) Evolutionary Computation in Combinatorial Optimization. EvoCOP 2021. Lecture Notes in Computer Science(), vol 12692. Springer, Cham. https://doi.org/10.1007/978-3-030-72904-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-72904-2_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-72903-5

  • Online ISBN: 978-3-030-72904-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics