Skip to main content

Decomposition-Based Multi-objective Landscape Features and Automated Algorithm Selection

  • Conference paper
  • First Online:
Evolutionary Computation in Combinatorial Optimization (EvoCOP 2021)

Abstract

Landscape analysis is of fundamental interest for improving our understanding on the behavior of evolutionary search, and for developing general-purpose automated solvers based on techniques from statistics and machine learning. In this paper, we push a step towards the development of a landscape-aware approach by proposing a set of landscape features for multi-objective combinatorial optimization, by decomposing the original multi-objective problem into a set of single-objective sub-problems. Based on a comprehensive set of bi-objective and three variants of the state-of-the-art Moea/d algorithm, we study the association between the proposed features, the global properties of the considered landscapes, and algorithm performance. We also show that decomposition-based features can be integrated into an automated approach for predicting algorithm performance and selecting the most accurate one on blind instances. In particular, our study reveals that such a landscape-aware approach is substantially better than the single best solver computed over the three considered Moea/d variants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Beham, A., Wagner, S., Affenzeller, M.: Algorithm selection on generalized quadratic assignment problem landscapes. In: GECCO 2018, pp. 253–260 (2018)

    Google Scholar 

  2. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001). https://doi.org/10.1023/A:1010933404324

    Article  MATH  Google Scholar 

  3. Deb, K.: Multi-Objective Optimization Using Evolutionary Algorithms. Wiley, Hoboken (2001)

    MATH  Google Scholar 

  4. Grefenstette, J.J.: Predictive models using fitness distributions of genetic operators. Found. Genet. Algorithms 3, 139–161 (1995)

    Google Scholar 

  5. Kauffman, S.A.: The Origins of Order. Oxford University Press, Oxford (1993)

    Google Scholar 

  6. Kerschke, P., Trautmann, H.: The R-package FLACCO for exploratory landscape analysis with applications to multi-objective optimization problems. In: CEC, pp. 5262–5269 (2016)

    Google Scholar 

  7. Kerschke, P., Hoos, H.H., Neumann, F., Trautmann, H.: Automated algorithm selection: survey and perspectives. Evol. Comput. 27(1), 3–45 (2019)

    Article  Google Scholar 

  8. Liefooghe, A., Daolio, F., Verel, S., Derbel, B., Aguirre, H., Tanaka, K.: Landscape-aware performance prediction for evolutionary multi-objective optimization. IEEE Trans. Evol. Comput. 24(6), 1063–1077 (2020)

    Article  Google Scholar 

  9. Liefooghe, A., Derbel, B., Verel, S., Aguirre, H., Tanaka, K.: Towards landscape-aware automatic algorithm configuration: preliminary experiments on neutral and rugged landscapes. In: Hu, B., López-Ibáñez, M. (eds.) EvoCOP 2017. LNCS, vol. 10197, pp. 215–232. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-55453-2_15

    Chapter  Google Scholar 

  10. Liefooghe, A., Verel, S., Derbel, B., Aguirre, H., Tanaka, K.: Dominance, indicator and decomposition based search for multi-objective QAP: landscape analysis and automated algorithm selection. In: Bäck, T., et al. (eds.) PPSN 2020. LNCS, vol. 12269, pp. 33–47. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58112-1_3

    Chapter  Google Scholar 

  11. Lindauer, M., van Rijn, J.N., Kotthoff, L.: The algorithm selection competition series 2015–17. CoRR abs/1805.01214 (2018)

    Google Scholar 

  12. Marquet, G., Derbel, B., Liefooghe, A., Talbi, E.-G.: Shake them all!. In: Bartz-Beielstein, T., Branke, J., Filipič, B., Smith, J. (eds.) PPSN 2014. LNCS, vol. 8672, pp. 641–651. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10762-2_63

    Chapter  Google Scholar 

  13. Mersmann, O., Bischl, B., Trautmann, H., Wagner, M., Bossek, J., Neumann, F.: A novel feature-based approach to characterize algorithm performance for the traveling salesperson problem. Ann. Math. Artif. Intell. 69, 151–182 (2013). https://doi.org/10.1007/s10472-013-9341-2

    Article  MathSciNet  MATH  Google Scholar 

  14. Rice, J.R.: The algorithm selection problem. Adv. Comput. 15, 65–118 (1976)

    Article  Google Scholar 

  15. Richter, H., Engelbrecht, A. (eds.): Recent Advances in the Theory and Application of Fitness Landscapes. Emergence Complexity and Computation. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-41888-4

    Book  Google Scholar 

  16. Trivedi, A., Srinivasan, D., Sanyal, K., Ghosh, A.: A survey of multiobjective evolutionary algorithms based on decomposition. IEEE TEVC 21(3), 440–462 (2017)

    Google Scholar 

  17. Verel, S., Liefooghe, A., Jourdan, L., Dhaenens, C.: On the structure of multiobjective combinatorial search space: MNK-landscapes with correlated objectives. Eur. J. Oper. Res. 227(2), 331–342 (2013)

    Article  MathSciNet  Google Scholar 

  18. Zhang, Q., Li, H.: MOEA/D: a multiobjective evolutionary algorithm based on decomposition. IEEE TEVC 11, 712–731 (2008)

    Google Scholar 

  19. Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M., da Fonseca, V.G.: Performance assessment of multiobjective optimizers: an analysis and review. IEEE TEVC 7(2), 117–132 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raphaël Cosson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cosson, R., Derbel, B., Liefooghe, A., Aguirre, H., Tanaka, K., Zhang, Q. (2021). Decomposition-Based Multi-objective Landscape Features and Automated Algorithm Selection. In: Zarges, C., Verel, S. (eds) Evolutionary Computation in Combinatorial Optimization. EvoCOP 2021. Lecture Notes in Computer Science(), vol 12692. Springer, Cham. https://doi.org/10.1007/978-3-030-72904-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-72904-2_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-72903-5

  • Online ISBN: 978-3-030-72904-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics