Skip to main content

A Novel Ant Colony Optimization Strategy for the Quantum Circuit Compilation Problem

  • Conference paper
  • First Online:
Evolutionary Computation in Combinatorial Optimization (EvoCOP 2021)

Abstract

Quantum Computing represents the most promising technology towards speed boost in computation, opening the possibility of major breakthroughs in several disciplines including Artificial Intelligence. This paper investigates the performance of a novel Ant Colony Optimization (ACO) algorithm for the realization (compilation) of nearest-neighbor compliant quantum circuits of minimum duration. In fact, current technological limitations (e.g., decoherence effect) impose that the overall duration (makespan) of the quantum circuit realization be minimized, and therefore the production of minimum-makespan compiled circuits for present and future quantum machines is of paramount importance. In our ACO algorithm (QCC-ACO), we introduce a novel pheromone model, and we leverage a heuristic-based Priority Rule to control the iterative selection of the quantum gates to be inserted in the solution.

The proposed QCC-ACO algorithm has been tested on a set of quantum circuit benchmark instances of increasing sizes available from the recent literature. We demonstrate that the QCC-ACO obtains results that outperform the current best solutions in the literature against the same benchmark, succeeding in significantly improving the makespan values for a great number of instances and demonstrating the scalability of the approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A set of benchmark instances of different size belonging to the Quantum Approximate Optimization Algorithm (QAOA) class [10, 11] tailored for the MaxCut problem and devised to be executed on top of a hardware architecture proposed by Rigetti Computing Inc. [20].

References

  1. Baioletti, M., Milani, A., Poggioni, V., Rossi, F.: Experimental evaluation of pheromone models in ACOPlan. Ann. Math. Artif. Intell. 62(3), 187–217 (2011). https://doi.org/10.1007/s10472-011-9265-7

  2. Baioletti, M., Milani, A., Santucci, V.: A new precedence-based ant colony optimization for permutation problems. In: Shi, Y., et al. (eds.) SEAL 2017. LNCS, vol. 10593, pp. 960–971. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68759-9_79

    Chapter  Google Scholar 

  3. Booth, K.E.C., Do, M., Beck, C., Rieffel, E., Venturelli, D., Frank, J.: Comparing and integrating constraint programming and temporal planning for quantum circuit compilation. In: Proceedings of the \(28^{th}\) International Conference on Automated Planning & Scheduling, ICAPS 2018, pp. 366–374 (2018)

    Google Scholar 

  4. Brierley, S.: Efficient implementation of quantum circuits with limited qubit interactions. Quantum Inf. Comput. 17(13–14), 1096–1104 (2017). http://dl.acm.org/citation.cfm?id=3179575.3179577

  5. Chand, S., Singh, H.K., Ray, T., Ryan, M.: Rollout based heuristics for the quantum circuit compilation problem. In: 2019 IEEE Congress on Evolutionary Computation (CEC), pp. 974–981 (2019)

    Google Scholar 

  6. Cirac, J.I., Zoller, P.: Quantum computations with cold trapped ions. Phys. Rev. Lett. 74, 4091–4094 (1995). https://doi.org/10.1103/PhysRevLett.74.4091

  7. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 2nd edn. MIT Press, Cambridge (2001)

    Google Scholar 

  8. Do, M., Wang, Z., O’Gorman, B., Venturelli, D., Rieffel, E., Frank, J.: Planning for compilation of a quantum algorithm for graph coloring. ArXiv abs/2002.10917 (2020)

    Google Scholar 

  9. Dorigo, M., Stützle, T.: Ant Colony Optimization. Bradford Company, USA (2004)

    Book  Google Scholar 

  10. Farhi, E., Goldstone, J., Gutmann, S.: A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028. November 2014

  11. Guerreschi, G.G., Park, J.: Gate scheduling for quantum algorithms. arXiv preprint arXiv:1708.00023, July 2017

  12. Hart, J., Shogan, A.: Semi-greedy heuristics: an empirical study. Oper. Res. Lett. 6, 107–114 (1987)

    Article  MathSciNet  Google Scholar 

  13. Herrera-Martí, D.A., Fowler, A.G., Jennings, D., Rudolph, T.: Photonic implementation for the topological cluster-state quantum computer. Phys. Rev. A 82, 032332 (2010). https://doi.org/10.1103/PhysRevA.82.032332

  14. Merkle, D., Merkle, M., Schmeck, H.: Ant colony optimization for resource-constrained project scheduling. IEEE Trans. Evol. Comput. 6(4), 333–346 (2002)

    Article  Google Scholar 

  15. Nau, D., Ghallab, M., Traverso, P.: Automated Planning: Theory & Practice. Morgan Kaufmann Publishers Inc., San Francisco (2004)

    MATH  Google Scholar 

  16. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition, 10th edn. Cambridge University Press, New York (2011)

    MATH  Google Scholar 

  17. Oddi, A., Rasconi, R.: Greedy randomized search for scalable compilation of quantum circuits. In: van Hoeve, W.-J. (ed.) CPAIOR 2018. LNCS, vol. 10848, pp. 446–461. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93031-2_32

    Chapter  MATH  Google Scholar 

  18. Rasconi, R., Oddi, A.: An innovative genetic algorithm for the quantum circuit compilation problem. In: Proceeding of the Thirty-Third Conference on Artificial Intelligence, AAAI 2019, pp. 7707–7714. AAAI Press (2019)

    Google Scholar 

  19. Resende, M.G., Werneck, R.F.: A hybrid heuristic for the p-median problem. J. Heuristics 10(1), 59–88 (2004). https://doi.org/10.1023/B:HEUR.0000019986.96257.50

  20. Sete, E.A., Zeng, W.J., Rigetti, C.T.: A functional architecture for scalable quantum computing. In: 2016 IEEE International Conference on Rebooting Computing (ICRC), pp. 1–6, October 2016. https://doi.org/10.1109/ICRC.2016.7738703

  21. Stützle, T.: An ant approach to the flow shop problem. In: Proceedings of the 6th European Congress on Intelligent Techniques & Soft Computing, EUFIT 1998, Aachen, Germany, pp. 1560–1564 (1998)

    Google Scholar 

  22. Venturelli, D., Do, M., Rieffel, E., Frank, J.: Temporal planning for compilation of quantum approximate optimization circuits. In: Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence, IJCAI 2017, pp. 4440–4446 (2017). https://doi.org/10.24963/ijcai.2017/620

  23. Yao, N.Y., et al.: Quantum logic between remote quantum registers. Phys. Rev. A 87, 022306 (2013). https://doi.org/10.1103/PhysRevA.87.022306

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Baioletti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Baioletti, M., Rasconi, R., Oddi, A. (2021). A Novel Ant Colony Optimization Strategy for the Quantum Circuit Compilation Problem. In: Zarges, C., Verel, S. (eds) Evolutionary Computation in Combinatorial Optimization. EvoCOP 2021. Lecture Notes in Computer Science(), vol 12692. Springer, Cham. https://doi.org/10.1007/978-3-030-72904-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-72904-2_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-72903-5

  • Online ISBN: 978-3-030-72904-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics