Skip to main content

Beyond Body Shape and Brain: Evolving the Sensory Apparatus of Voxel-Based Soft Robots

  • Conference paper
  • First Online:
Applications of Evolutionary Computation (EvoApplications 2021)

Abstract

Biological and artificial embodied agents behave by acquiring information through sensors, processing that information, and acting on the environment. The sensory apparatus, i.e., the location on the body of the sensors and the kind of information the sensors are able to capture, has a great impact on the agent ability of exhibiting complex behaviors. While in nature, the sensory apparatus is the result of a long-lasting evolution, in artificial agents (robots) it is usually the result of a design choice. However, when the agents are complex and the design space is large, making that choice can be hard. In this paper, we explore the possibility of evolving the sensory apparatus of voxel-based soft robots (VSRs), a kind of simulated robots composed of multiple deformable components. VSRs, due to their intrinsic modularity, allow for great freedom in how to shape the robot body, brain, and sensory apparatus. We consider a set of sensors that allow the agent to sense itself and the environment (using vision and touch) and we show, experimentally, that the effectiveness of the sensory apparatus depends on the shape of the body and on the actuation capability, i.e., the VSR strength. Then we show that evolutionary optimizaemedvet@units.ittion is able to evolve an effective sensory apparatus, even when constraints on the availability of the sensors are posed. By extending the adaptation to the sensory apparatus, beyond the body shape and the brain, we believe that our study takes a step forward to the ambitious path towards self-building robots.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cheney, N., MacCurdy, R., Clune, J., Lipson, H.: Unshackling evolution: evolving soft robots with multiple materials and a powerful generative encoding. In: Genetic and Evolutionary Computation Conference, pp. 167–174 (2013)

    Google Scholar 

  2. Zappetti, D., Mintchev, S., Shintake, J., Floreano, D.: Bio-inspired tensegrity soft modular robots. In: Mangan, M., Cutkosky, M., Mura, A., Verschure, P.F.M.J., Prescott, T., Lepora, N. (eds.) Living Machines 2017. LNCS (LNAI), vol. 10384, pp. 497–508. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63537-8_42

    Chapter  Google Scholar 

  3. Lee, C., et al.: Soft robot review. Int. J. Control Autom. Syst. 15(1), 3–15 (2016). https://doi.org/10.1007/s12555-016-0462-3

    Article  Google Scholar 

  4. Shah, D., Yang, B., Kriegman, S., Levin, M., Bongard, J., Kramer-Bottiglio, R.: Shape changing robots: bioinspiration, simulation, and physical realization. Adv. Mater. 2002882 (2020)

    Google Scholar 

  5. Howison, T., Hauser, S., Hughes, J., Iida, F.: Reality-assisted evolution of soft robots through large-scale physical experimentation: a review. arXiv preprint arXiv:2009.13960 (2020)

  6. Mintchev, S., Zappetti, D., Willemin, J., Floreano, D.: A soft robot for random exploration of terrestrial environments. In: International Conference on Robotics and Automation, pp. 7492–7497. IEEE (2018)

    Google Scholar 

  7. Cheney, N., Bongard, J., Lipson, H.: Evolving soft robots in tight spaces. In: Genetic and Evolutionary Computation Conference, pp. 935–942 (2015)

    Google Scholar 

  8. Hallawa, A., Iacca, G., Sariman, C., Rahman, T., Cochez, M., Ascheid, G.: Morphological evolution for pipe inspection using robot operating system (ROS). Mater. Manuf. Processes 35(6), 714–724 (2020)

    Article  Google Scholar 

  9. Song, Y.S., et al.: Soft robot for gait rehabilitation of spinalized rodents. In: International Conference on Intelligent Robots and Systems, pp. 971–976. IEEE (2013)

    Google Scholar 

  10. Zhang, B., Fan, Y., Yang, P., Cao, T., Liao, H.: Worm-like soft robot for complicated tubular environments. Soft Rob. 6(3), 399–413 (2019)

    Article  Google Scholar 

  11. Hiller, J., Lipson, H.: Automatic design and manufacture of soft robots. IEEE Trans. Rob. 28(2), 457–466 (2011)

    Article  Google Scholar 

  12. Lee, H., et al.: 3D-printed programmable tensegrity for soft robotics. Sci. Rob. 5(45) (2020)

    Google Scholar 

  13. Kriegman, S., Cheney, N., Bongard, J.: How morphological development can guide evolution. Sci. Rep. 8(1), 1–10 (2018)

    Google Scholar 

  14. Talamini, J., Medvet, E., Bartoli, A., De Lorenzo, A.: Evolutionary synthesis of sensing controllers for voxel-based soft robots. In: Artificial Life Conference, pp. 574–581. MIT Press (2019)

    Google Scholar 

  15. Medvet, E., Bartoli, A., De Lorenzo, A., Fidel, G.: Evolution of distributed neural controllers for voxel-based soft robots. In: Genetic and Evolutionary Computation Conference, pp. 112–120 (2020)

    Google Scholar 

  16. Sims, K.: Evolving virtual creatures. In: Proceedings of the 21st Annual Conference on Computer Graphics and Interactive Techniques, pp. 15–22 (1994)

    Google Scholar 

  17. Balakrishnan, K., Honavar, V.: On sensor evolution in robotics. In: Proceedings of the First International Conference on Genetic Programming, Citeseer, pp. 455–460 (1996)

    Google Scholar 

  18. Mautner, C., Belew, R.K.: Evolving robot morphology and control. Artif. Life Rob. 4(3), 130–136 (2000)

    Article  Google Scholar 

  19. Powers, J., Grindle, R., Kriegman, S., Frati, L., Cheney, N., Bongard, J.: Morphology dictates learnability in neural controllers. In: Artificial Life Conference, pp. 52–59. MIT Press (2020)

    Google Scholar 

  20. Hiller, J., Lipson, H.: Dynamic simulation of soft multimaterial 3D-printed objects. Soft Rob. 1(1), 88–101 (2014)

    Article  Google Scholar 

  21. Medvet, E., Bartoli, A., De Lorenzo, A., Seriani, S.:2D-VSR-SIM: a simulation tool for the optimization of 2-Dvoxel-based soft robots. SoftwareX 12, 100573 (2020)

    Google Scholar 

  22. Medvet, E., Bartoli, A., De Lorenzo, A., Seriani, S.: Design, validation, and case studies of 2D-VSR-SIM, an optimization-friendly simulator of 2-D Voxel-based soft robots. arXiv preprint arXiv:2001.08617 (2020)

  23. Hansen, N., Ostermeier, A.: Completely derandomized self-adaptation in evolution strategies. Evol. Comput. 9(2), 159–195 (2001)

    Article  Google Scholar 

  24. Medvet, E., Bartoli, A.: GraphEA: a versatile representation and evolutionary algorithm for graphs. In: Workshop on Evolutionary and Population-based Optimization (WEPO@AIxIA) (2020)

    Google Scholar 

  25. Rothlauf, F., Goldberg, D.E.: Redundant representations in evolutionary computation. Evol. Comput. 11(4), 381–415 (2003)

    Article  Google Scholar 

  26. Hansen, N.: The CMA evolution strategy: a comparing review. In: Towards a New Evolutionary Computation, pp. 75–102. Springer (2006) . https://doi.org/10.1007/3-540-32494-1_4

  27. Auerbach, J.E., Iacca, G., Floreano, D.: Gaining insight into quality diversity. In: Genetic and Evolutionary Computation Conference - Companion, pp. 1061–1064 (2016)

    Google Scholar 

  28. Nordmoen, J., Veenstra, F., Ellefsen, K.O., Glette, K.: Quality and diversity in evolutionary modular robotics. arXiv preprint arXiv:2008.02116 (2020)

Download references

Acknowledgments and Author Contributions

We thank Luca Zanella for the CMA-ES and Lidar sensor implementation. We gratefully acknowledge HPC-Cineca for making computing resources available. A. F.: Investigation; Software; Data curation; Visualization; Writing - original draft. G. I.: Conceptualization; Methodology; Writing - review & editing. E. M.: Conceptualization; Methodology; Software; Visualization; Writing - review & editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Medvet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ferigo, A., Iacca, G., Medvet, E. (2021). Beyond Body Shape and Brain: Evolving the Sensory Apparatus of Voxel-Based Soft Robots. In: Castillo, P.A., Jiménez Laredo, J.L. (eds) Applications of Evolutionary Computation. EvoApplications 2021. Lecture Notes in Computer Science(), vol 12694. Springer, Cham. https://doi.org/10.1007/978-3-030-72699-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-72699-7_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-72698-0

  • Online ISBN: 978-3-030-72699-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics