Skip to main content

Standardization of Molecular Monitoring for Chronic Myeloid Leukemia: 2021 Update

  • Chapter
  • First Online:
Chronic Myeloid Leukemia

Part of the book series: Hematologic Malignancies ((HEMATOLOGIC))

Abstract

Serial quantification of BCR-ABL1 mRNA levels is a sensitive and specific measure of response to therapy in patients with chronic myeloid leukemia and is used to define time-related clinical milestones as well as eligibility for stopping treatment. To improve the comparability of molecular monitoring results between centers, an international scale (IS) for BCR-ABL1 measurement has been implemented by testing laboratories worldwide, either by the derivation of laboratory-specific conversion factors or by using kits and reagents calibrated to the First World Health Organization International Genetic Reference Panel for quantitation of BCR-ABL1 mRNA. More recent attention has focused on defining deep molecular response (DMR) within the context of the IS and pushing the limit of detection of the test. While there has been substantial progress, accurate and sensitive BCR-ABL1 measurement remains technically challenging and standardization is an ongoing process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hughes T, et al. False-positive results with PCR to detect leukaemia-specific transcript. Lancet. 1990;335(8696):1037–8.

    Article  CAS  PubMed  Google Scholar 

  2. Sawyers CL, et al. Molecular relapse in chronic myelogenous leukemia patients after bone marrow transplantation detected by polymerase chain reaction. Proc Natl Acad Sci U S A. 1990;87(2):563–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Gabert J, et al. Detection of residual bcr/abl translocation by polymerase chain reaction in chronic myeloid leukaemia patients after bone-marrow transplantation. Lancet. 1989;2(8672):1125–8.

    Article  CAS  PubMed  Google Scholar 

  4. Hughes TP, Goldman JM. Biological importance of residual leukaemic cells after BMT for CML: does the polymerase chain reaction help? Bone Marrow Transplant. 1990;5(1):3–6.

    CAS  PubMed  Google Scholar 

  5. Cross NC, et al. Minimal residual disease after allogeneic bone marrow transplantation for chronic myeloid leukaemia in first chronic phase: correlations with acute graft-versus-host disease and relapse. Br J Haematol. 1993;84(1):67–74.

    Article  CAS  PubMed  Google Scholar 

  6. Cross NC. Standardisation of molecular monitoring for chronic myeloid leukaemia. Best Pract Res Clin Haematol. 2009;22(3):355–65.

    Article  PubMed  Google Scholar 

  7. Cross NC, et al. Competitive polymerase chain reaction to estimate the number of BCR-ABL transcripts in chronic myeloid leukemia patients after bone marrow transplantation. Blood. 1993;82(6):1929–36.

    Article  CAS  PubMed  Google Scholar 

  8. Lion T, et al. Early detection of relapse after bone marrow transplantation in patients with chronic myelogenous leukaemia. Lancet. 1993;341(8840):275–6.

    Article  CAS  PubMed  Google Scholar 

  9. Malinge MC, et al. Quantitative determination of the hybrid Bcr-Abl RNA in patients with chronic myelogenous leukaemia under interferon therapy. Br J Haematol. 1992;82(4):701–7.

    Article  CAS  PubMed  Google Scholar 

  10. Hochhaus A, et al. Variable numbers of BCR-ABL transcripts persist in CML patients who achieve complete cytogenetic remission with interferon-alpha. Br J Haematol. 1995;91(1):126–31.

    Article  CAS  PubMed  Google Scholar 

  11. Hochhaus A, et al. Quantification of residual disease in chronic myelogenous leukemia patients on interferon-alpha therapy by competitive polymerase chain reaction. Blood. 1996;87(4):1549–55.

    Article  CAS  PubMed  Google Scholar 

  12. Aguiar RC, et al. Abnormalities of chromosome band 8p11 in leukemia: two clinical syndromes can be distinguished on the basis of MOZ involvement. Blood. 1997;90(8):3130–5.

    Article  CAS  PubMed  Google Scholar 

  13. Heid CA, et al. Real time quantitative PCR. Genome Res. 1996;6(10):986–94.

    Article  CAS  PubMed  Google Scholar 

  14. Lin F, et al. Correlation between the proportion of Philadelphia chromosome-positive metaphase cells and levels of BCR-ABL mRNA in chronic myeloid leukaemia. Genes Chromosomes Cancer. 1995;13(2):110–4.

    Article  CAS  PubMed  Google Scholar 

  15. Beillard E, et al. Evaluation of candidate control genes for diagnosis and residual disease detection in leukemic patients using 'real-time' quantitative reverse-transcriptase polymerase chain reaction (RQ-PCR)—a Europe against cancer program. Leukemia. 2003;17(12):2474–86.

    Article  CAS  PubMed  Google Scholar 

  16. Branford S, Hughes T. Diagnosis and monitoring of chronic myeloid leukemia by qualitative and quantitative RT-PCR. Methods Mol Med. 2006;125:69–92.

    CAS  PubMed  Google Scholar 

  17. Branford S, et al. Rationale for the recommendations for harmonizing current methodology for detecting BCR-ABL transcripts in patients with chronic myeloid leukaemia. Leukemia. 2006;20(11):1925–30.

    Article  CAS  PubMed  Google Scholar 

  18. Jennings LJ, et al. Design and analytic validation of BCR-ABL1 quantitative reverse transcription polymerase chain reaction assay for monitoring minimal residual disease. Arch Pathol Lab Med. 2012;136(1):33–40.

    Article  PubMed  Google Scholar 

  19. Gabert J, et al. Standardization and quality control studies of 'real-time' quantitative reverse transcriptase polymerase chain reaction of fusion gene transcripts for residual disease detection in leukemia—a Europe Against Cancer program. Leukemia. 2003;17(12):2318–57.

    Article  CAS  PubMed  Google Scholar 

  20. Foroni L, et al. Guidelines for the measurement of BCR-ABL1 transcripts in chronic myeloid leukaemia. Br J Haematol. 2011;153(2):179–90.

    Article  CAS  PubMed  Google Scholar 

  21. Hughes TP, et al. Frequency of major molecular responses to imatinib or interferon alfa plus cytarabine in newly diagnosed chronic myeloid leukemia. N Engl J Med. 2003;349(15):1423–32.

    Article  CAS  PubMed  Google Scholar 

  22. Hughes T, et al. Monitoring CML patients responding to treatment with tyrosine kinase inhibitors: review and recommendations for harmonizing current methodology for detecting BCR-ABL transcripts and kinase domain mutations and for expressing results. Blood. 2006;108(1):28–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lauseker M, et al. Equivalence of BCR-ABL transcript levels with complete cytogenetic remission in patients with chronic myeloid leukemia in chronic phase. J Cancer Res Clin Oncol. 2014;140:1965.

    Article  CAS  PubMed  Google Scholar 

  24. Cross NC, et al. Standardized definitions of molecular response in chronic myeloid leukemia. Leukemia. 2012;26(10):2172–5.

    Article  CAS  PubMed  Google Scholar 

  25. Baccarani M, et al. European LeukemiaNet recommendations for the management of chronic myeloid leukemia: 2013. Blood. 2013;122(6):872–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Cross NC, et al. Laboratory recommendations for scoring deep molecular responses following treatment for chronic myeloid leukemia. Leukemia. 2015;29(5):999–1003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hochhaus A, et al. European LeukemiaNet 2020 recommendations for treating chronic myeloid leukemia. Leukemia. 2020;34(4):966–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Branford S, et al. Desirable performance characteristics for BCR-ABL measurement on an international reporting scale to allow consistent interpretation of individual patient response and comparison of response rates between clinical trials. Blood. 2008;112(8):3330–8.

    Article  CAS  PubMed  Google Scholar 

  29. Muller MC, et al. Harmonization of molecular monitoring of CML therapy in Europe. Leukemia. 2009;23(11):1957–63.

    Article  CAS  PubMed  Google Scholar 

  30. White HE, et al. Establishment of the first World Health Organization International Genetic Reference Panel for quantitation of BCR-ABL mRNA. Blood. 2010;116(22):e111–7.

    Article  CAS  PubMed  Google Scholar 

  31. Cross NCP, et al. Development and evaluation of a secondary reference panel for BCR-ABL1 quantification on the international scale. Leukemia. 2016;30(9):1844–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ruiz MS, et al. Programme for Harmonization to the International Scale in Latin America for BCR-ABL1 quantification in CML patients: findings and recommendations. Clin Chem Lab Med (CCLM). 2020:20191283.

    Google Scholar 

  33. Zhang J-W, et al. Standardization of BCR-ABL1 quantification on the international scale in China using locally developed secondary reference panels. Exp Hematol. 2020;81:42–9.e3

    Article  CAS  PubMed  Google Scholar 

  34. White H, et al. A certified plasmid reference material for the standardisation of BCR-ABL1 mRNA quantification by real-time quantitative PCR. Leukemia. 2015;29(2):369–76.

    Article  CAS  PubMed  Google Scholar 

  35. White HE, et al. Establishment and validation of analytical reference panels for the standardization of quantitative BCR-ABL1 measurements on the international scale. Clin Chem. 2013;59(6):938–48.

    Article  CAS  PubMed  Google Scholar 

  36. Cayuela JM, et al. Cartridge-based automated BCR-ABL1 mRNA quantification: solving the issues of standardization, at what cost? Haematologica. 2011;96(5):664–71.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Scott S, et al. Measurement of BCR-ABL1 by RT-qPCR in chronic myeloid leukaemia: findings from an International EQA Programme. Br J Haematol. 2017;177(3):414–22.

    Article  CAS  PubMed  Google Scholar 

  38. Soverini S, et al. BCR-ABL kinase domain mutation analysis in chronic myeloid leukemia patients treated with tyrosine kinase inhibitors: recommendations from an expert panel on behalf of European LeukemiaNet. Blood. 2011;118(5):1208–15.

    Article  CAS  PubMed  Google Scholar 

  39. Smith G, et al. A British Society for Haematology Guideline on the diagnosis and management of chronic myeloid leukaemia. Br J Haematol. 2020;191:171.

    Article  PubMed  Google Scholar 

  40. National Comprehensive Cancer Network Guidelines in Oncology: Chronic Myeloid Leukemia. Version 3.2020. 2020.

    Google Scholar 

  41. Rea D, Cayuela J-M. Treatment-free remission in patients with chronic myeloid leukemia. Int J Hematol. 2018;108(4):355–64.

    Article  PubMed  Google Scholar 

  42. CLSI, Evaluation of Detection Capability for Clinical Laboratory Measurement Procedures; Approved Guideline—Second Edition. CLSI document EP17-A2. 2012: Clinical and Laboratory Standards Institute.

    Google Scholar 

  43. White HE, et al. Variation in limit of blank for BCR-ABL1 detection between laboratories impacts on scoring of deep molecular response. HemaSphere. 2018;2(S1):140.

    Google Scholar 

  44. Hanfstein B, et al. Distinct characteristics of e13a2 versus e14a2 BCR-ABL1 driven chronic myeloid leukemia under first-line therapy with imatinib. Haematologica. 2014;99(9):1441–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Castagnetti F, et al. The BCR-ABL1 transcript type influences response and outcome in Philadelphia chromosome-positive chronic myeloid leukemia patients treated frontline with imatinib. Am J Hematol. 2017;92(8):797–805.

    Article  CAS  PubMed  Google Scholar 

  46. Jain P, et al. Impact of BCR-ABL transcript type on outcome in patients with chronic-phase CML treated with tyrosine kinase inhibitors. Blood. 2016;127(10):1269–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kjaer L, et al. Variant-specific discrepancy when quantitating BCR-ABL1 e13a2 and e14a2 transcripts using the Europe Against Cancer qPCR assay. Eur J Haematol. 2019;103(1):26–34.

    Article  CAS  PubMed  Google Scholar 

  48. Bernardi S, et al. “Variant-specific discrepancy when quantitating BCR-ABL1 e13a2 and e14a2 transcripts using the Europe Against Cancer qPCR assay.” is dPCR the key? Eur J Haematol. 2019;103(3):272–3.

    Article  PubMed  Google Scholar 

  49. Polakova, K.M., et al., Individual molecular response evaluation on both DNA and mRNA BCR-ABL1 level diminished differences in time to molecular response achievement between CML patients with e13a2 vs e14a2 transcript type. 25th Congress of EHA, 2020. EP742.

    Google Scholar 

  50. Fava C, et al. A comparison of droplet digital PCR and RT-qPCR for BCR-ABL1 monitoring in chronic myeloid leukemia. Blood. 2019;134(Supplement_1):2092.

    Article  Google Scholar 

  51. Scott S, et al., Digital PCR for the measurement of BCR-ABL1 in CML: A new dawn?, in 25th Congress of EHA. 2020.

    Google Scholar 

  52. Franke G-N, et al. Comparison of real-time quantitative PCR and digital droplet PCR for BCR-ABL1 monitoring in patients with chronic myeloid leukemia. J Mol Diagn: JMD. 2020;22(1):81–9.

    Article  CAS  PubMed  Google Scholar 

  53. Nicolini FE, et al. Evaluation of residual disease and TKI duration are critical predictive factors for molecular recurrence after stopping Imatinib first-line in chronic phase CML patients. Clin Cancer Res. 2019;25(22):6606.

    Article  CAS  PubMed  Google Scholar 

  54. Bernardi S, et al. Digital PCR improves the quantitation of DMR and the selection of CML candidates to TKIs discontinuation. Cancer Med. 2019;8(5):2041–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Hanfstein B, et al. Velocity of early BCR-ABL transcript elimination as an optimized predictor of outcome in chronic myeloid leukemia (CML) patients in chronic phase on treatment with imatinib. Leukemia. 2014;28(10):1988–92.

    Article  CAS  PubMed  Google Scholar 

  56. Branford S, et al. Prognosis for patients with CML and >10% BCR-ABL1 after 3 months of imatinib depends on the rate of BCR-ABL1 decline. Blood. 2014;124(4):511–8.

    Article  CAS  PubMed  Google Scholar 

  57. Fava C, et al. Early BCR-ABL1 reduction is predictive of better event-free survival in patients with newly diagnosed chronic myeloid leukemia treated with any tyrosine kinase inhibitor. Clin Lymphoma Myeloma Leuk. 2016;16:S96–S100.

    Article  PubMed  Google Scholar 

  58. Huet S, et al. Major molecular response achievement in CML patients can be predicted by BCR-ABL1/ABL1 or BCR-ABL1/GUS ratio at an earlier time point of follow-up than currently recommended. PLoS One. 2014;9(9):e106250.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Iriyama N, et al. Shorter halving time of BCR-ABL1 transcripts is a novel predictor for achievement of molecular responses in newly diagnosed chronic-phase chronic myeloid leukemia treated with dasatinib: results of the D-first study of Kanto CML study group. Am J Hematol. 2015;90(4):282–7.

    Article  CAS  PubMed  Google Scholar 

  60. Ross DM, et al. Patients with chronic myeloid leukemia who maintain a complete molecular response after stopping imatinib treatment have evidence of persistent leukemia by DNA PCR. Leukemia. 2010;24(10):1719–24.

    Article  CAS  PubMed  Google Scholar 

  61. Bartley PA, et al. Sensitive detection and quantification of minimal residual disease in chronic myeloid leukaemia using nested quantitative PCR for BCR-ABL DNA. Int J Lab Hematol. 2010;32(6 Pt 1):e222–8.

    Article  CAS  PubMed  Google Scholar 

  62. Sobrinho-Simoes M, et al. In search of the original leukemic clone in chronic myeloid leukemia patients in complete molecular remission after stem cell transplantation or imatinib. Blood. 2010;116(8):1329–35.

    Article  CAS  PubMed  Google Scholar 

  63. Pagani IS, et al. BCR-ABL1 genomic DNA PCR response kinetics during first-line imatinib treatment of chronic myeloid leukemia. Haematologica. 2018;103(12):2026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Machova Polakova K, et al. Analysis of chronic myeloid leukaemia during deep molecular response by genomic PCR: a traffic light stratification model with impact on treatment-free remission. Leukemia. 2020;34(8):2113–24.

    Article  CAS  PubMed  Google Scholar 

  65. Winn-Deen ES, et al. Development of an integrated assay for detection of BCR-ABL RNA. Clin Chem. 2007;53(9):1593–600.

    Article  CAS  PubMed  Google Scholar 

  66. Day G-J, et al. Development of Xpert® BCR-ABL ultra, an automated and standardized multiplex assay with required performance characteristics for BCR-ABL1 quantitative measurement on an international reporting scale. Blood. 2015;126(23):2793.

    Article  Google Scholar 

  67. Giustacchini A, et al. Single-cell transcriptomics uncovers distinct molecular signatures of stem cells in chronic myeloid leukemia. Nat Med. 2017;23(6):692–702.

    Article  CAS  PubMed  Google Scholar 

  68. Warfvinge R, et al. Single-cell molecular analysis defines therapy response and immunophenotype of stem cell subpopulations in CML. Blood. 2017;129(17):2384–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Ediriwickrema A, et al. Single-cell mutational profiling enhances the clinical evaluation of AML MRD. Blood Adv. 2020;4(5):943–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgement

The authors received research support from the European LeukemiaNet via the European Treatment and Outcome Study (EUTOS). Matthew Salmon was supported by the Salisbury District Hospital Stars Appeal.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholas C. P. Cross .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Salmon, M., White, H.E., Cross, N.C.P., Hochhaus, A. (2021). Standardization of Molecular Monitoring for Chronic Myeloid Leukemia: 2021 Update. In: Hehlmann, R. (eds) Chronic Myeloid Leukemia. Hematologic Malignancies. Springer, Cham. https://doi.org/10.1007/978-3-030-71913-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-71913-5_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-71912-8

  • Online ISBN: 978-3-030-71913-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics