Skip to main content

Role of Satellites in Agriculture

  • Chapter
  • First Online:
Smart IoT for Research and Industry

Part of the book series: EAI/Springer Innovations in Communication and Computing ((EAISICC))

  • 589 Accesses

Abstract

There has been immense development in the field of agriculture during the last two decades, and one of the major areas of the technologies which have made it possible is the remote sensing technologies. The images from the satellites have proved to be a boon in the precision agriculture and has increased the efficiency of the production as well as aided the farmers with the help of machine learning and big data vision to make the right decision at the right time. This chapter reviews the role of the satellites and how big data analysis can give amazing results and hence contribute to the national economy. Further the advantages and disadvantages along with the challenges that lie ahead are discussed and how the future of these technologies will help the agricultural sector.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ishimwe, R., Abutaleb, K., & Ahmed, F. (2014). Applications of thermal imaging in agriculture—A review. Advanced Remote Sensing, 3(3), 128.

    Article  Google Scholar 

  2. Huang, Y., et al. (2018). Journal of Integrative Agriculture, 17(9), 1915–1193.

    Article  Google Scholar 

  3. Jeppesen, J. H., Jacobsen, R. H., Jørgensen, R. N., Halberg, A., & Toftegaard, T. S. (2017). Identification of high-variation fields based on open satellite imagery. 11th European Conference on Precision Agriculture.

    Google Scholar 

  4. Jeppesen, J. H., Jacobsen, R. H., Jørgensen R. N., & Toftegaard, T. S.. (2016). Towards data-driven precision agriculture using open data and open source software. In International conference on Agricultural Engineering.

    Google Scholar 

  5. Wulder, M. A., Masek, J. G., Cohen, W. B., Loveland, T. R., & Woodcock, C. E. (2012). Opening the archive: How free data has enabled the science and monitoring promise of Landsat. Remote Sensing of Environment, 122(Supplement C), 2–10. Landsat Legacy Special Issue.

    Article  Google Scholar 

  6. Saxena, L., & Armstrong, L. (2014). A survey of image processing techniques for agriculture. Proceedings of Asian Federation for Information Technology in Agriculture, Australian Society of Information and Communication Technologies in Agriculture. Perth, Australia.

    Google Scholar 

  7. Singh, A., Ganapathysubramanian, B., Singh, A. K., & Sarkar, S. (2016). Machine learning for high-throughput stress phenotyping in plants. Trends in Plant Science, 21(2), 110–124.

    Article  Google Scholar 

  8. Samuel, A. L. (1959). Some studies in machine learning using the game of checkers. IBM Journal of Research and Development, 44, 206–226.

    Article  Google Scholar 

  9. Agrawal, R., Chatterjee, J.M., Kumar, A., Rathore, P.S., & Le, D.-N. (2020). Machine Learning for Healthcare: Handling and Managing Data (1st ed.). CRC Press. https://doi.org/10.1201/9780429330131

  10. Agrawal, R. (2016). A modified K-nearest neighbor algorithm using feature optimization. International Journal of Engineering and Technology, 8(1), 28–37.

    Google Scholar 

  11. LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436–444. Lee, S. H., Chan, C. S., Wilkin, P., Remagnino, P. (2015). Deep-plant: Plant identification with convolutional neural networks. IEEE International Conference on Image Processing (ICIP). Quebec city, Canada, pp. 452–456.

    Article  Google Scholar 

  12. Christiansen, P., Nielsen, L. N., Steen, K. A., Jørgensen, R. N., & Karstoft, H. (2016). DeepAnomaly: Combining background subtraction and deep learning for detecting obstacles and anomalies in an agricultural field. Sensors, 16(11), 1904.

    Article  Google Scholar 

  13. Ramos, P. J., Prieto, F. A., Montoya, E. C., & Oliveros, C. E. (2017). Automatic fruit count on coffee branches using computer vision. Computers and Electronics in Agriculture, 137, 9–22.

    Article  Google Scholar 

  14. Amatya, S., Karkee, M., Gongal, A., Zhang, Q., & Whiting, M. D. (2015). Detection of cherry tree branches with full foliage in planar architecture for automated sweet-cherry harvesting. Biosystems Engineering, 146, 3–15.

    Article  Google Scholar 

  15. Sengupta, S., & Lee, W. S. (2014). Identification and determination of the number of immature green citrus fruit in a canopy under different ambient light conditions. Biosystems Engineering, 117, 51–61.

    Article  Google Scholar 

  16. Ali, I., Cawkwell, F., Dwyer, E., & Green, S. (2016). Modeling managed grassland biomass estimation by using multitemporal remote sensing data—A machine learning approach. IEEE Journal of Selected Topics in Applied Earth Observations Remote Sensing, 10, 3254–3264.

    Article  Google Scholar 

  17. Pantazi, X.-E., Moshou, D., Alexandridis, T. K., Whetton, R. L., & Mouazen, A. M. (2016). Wheat yield prediction using machine learning and advanced sensing techniques. Computers and Electronics in Agriculture, 121, 57–65.

    Article  Google Scholar 

  18. Su, Y., Xu, H., & Yan, L. (2017). Support vector machine-based open crop model (SBOCM): Case of rice production in China. Saudi Journal of Biological Sciences, 24, 537–547.

    Article  Google Scholar 

  19. Liakos, K. G., Busato, P., Moshou, D., Pearson, S., & Bochti, D. (2018). Machine learning in agriculture: A review. Sensors, 18(8), 2674.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prashant Johri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Johri, P., Singh, J.N., Khatri, S.K., Bagchi, A., Rajesh, E. (2022). Role of Satellites in Agriculture. In: Moh, M., Sharma, K.P., Agrawal, R., Garcia Diaz, V. (eds) Smart IoT for Research and Industry. EAI/Springer Innovations in Communication and Computing. Springer, Cham. https://doi.org/10.1007/978-3-030-71485-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-71485-7_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-71484-0

  • Online ISBN: 978-3-030-71485-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics