Skip to main content

Abstract

One of the promising methods to overcome the Shockley-Queisser limit in solar energy conversion is triplet-triplet annihilation-based photon upconversion (TTA-UC) from near-infrared (NIR,  > 700 nm) light to visible (Vis,  < 700 nm) light. However, it had been difficult to achieve efficient NIR-to-Vis TTA-UC mainly due to the absence of appropriate triplet sensitizers with less or no energy loss associated with intersystem crossing (ISC). In this chapter, we overview recent successful examples of NIR-to-Vis TTA-UC based on the developments of new NIR-absorbing triplet sensitizers, such as semiconductor nanocrystals with small singlet-triplet exchange splitting and Os complexes with direct singlet-to-triplet (S-T) absorption.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. T. Trupke, M.A. Green, P. Würfel, Improving solar cell efficiencies by up-conversion of sub-band-gap light. J. Appl. Phys. 92(7), 4117–4122 (2002)

    Article  CAS  Google Scholar 

  2. S. Baluschev, V. Yakutkin, T. Miteva, G. Wegner, T. Roberts, G. Nelles, A. Yasuda, S. Chernov, S. Aleshchenkov, A. Cheprakov, A general approach for non-coherently excited annihilation up-conversion: transforming the solar-spectrum. New J. Phys. 10(1), 013007 (2008)

    Article  CAS  Google Scholar 

  3. N.J. Ekins-Daukes, T.W. Schmidt, A molecular approach to the intermediate band solar cell: the symmetric case. Appl. Phys. Lett. 93, 063507 (2008)

    Article  CAS  Google Scholar 

  4. S. Baluschev, T. Miteva, V. Yakutkin, G. Nelles, A. Yasuda, G. Wegner, Up-conversion fluorescence: noncoherent excitation by sunlight. Phys. Rev. Lett. 97(14), 143903 (2006)

    Article  CAS  Google Scholar 

  5. T.N. Singh-Rachford, F.N. Castellano, Photon upconversion based on sensitized triplet–triplet annihilation. Coord. Chem. Rev. 254(21–22), 2560–2573 (2010)

    Article  CAS  Google Scholar 

  6. J. Zhao, S. Ji, H. Guo, Triplet–triplet annihilation based upconversion: from triplet sensitizers and triplet acceptors to upconversion quantum yields. RSC Adv. 1(6), 937–950 (2011)

    Article  CAS  Google Scholar 

  7. Y.C. Simon, C. Weder, Low-power photon upconversion through triplet-triplet annihilation in polymers. J. Mater. Chem. 22(39), 20817–20830 (2012)

    Article  CAS  Google Scholar 

  8. A. Monguzzi, R. Tubino, S. Hoseinkhani, M. Campione, F. Meinardi, Low power, non-coherent sensitized photon up-conversion: modelling and perspectives. Phys. Chem. Chem. Phys. 14(13), 4322–4332 (2012)

    Article  CAS  Google Scholar 

  9. V. Gray, K. Moth-Poulsen, B. Albinsson, M. Abrahamsson, Towards efficient solid-state triplet–triplet annihilation based photon upconversion: supramolecular, macromolecular and self-assembled systems. Coord. Chem. Rev. 362(1), 54–71 (2018)

    Article  CAS  Google Scholar 

  10. J.C. Wang, S.P. Hill, T. Dilbeck, O.O. Ogunsolu, T. Banerjee, K. Hanson, Multimolecular assemblies on high surface area metal oxides and their role in interfacial energy and electron transfer. Chem. Soc. Rev. 47(1), 104–148 (2018)

    Article  CAS  Google Scholar 

  11. T.F. Schulze, T.W. Schmidt, Photochemical upconversion: present status and prospects for its application to solar energy conversion. Energy Environ. Sci. 8(1), 103–125 (2015)

    Article  CAS  Google Scholar 

  12. Z. Huang, X. Li, M. Mahboub, K.M. Hanson, V.M. Nichols, H. Le, M.L. Tang, C.J. Bardeen, Hybrid molecule-nanocrystal photon upconversion across the visible and near-infrared. Nano Lett. 15(8), 5552–5557 (2015)

    Article  CAS  Google Scholar 

  13. R. Younts, H.-S. Duan, B. Gautam, B. Saparov, J. Liu, C. Mongin, F.N. Castellano, D.B. Mitzi, K. Gundogdu, Efficient generation of long-lived triplet excitons in 2D hybrid perovskite. Adv. Mater. 29(9), 1604278 (2017)

    Article  CAS  Google Scholar 

  14. K. Mase, K. Okumura, N. Yanai, N. Kimizuka, Triplet sensitization by perovskite nanocrystals for photon upconversion. Chem. Commun. 53(59), 8261–8264 (2017)

    Article  CAS  Google Scholar 

  15. L. Nienhaus, J.-P. Correa-Baena, S. Wieghold, M. Einzinger, T.-A. Lin, K.E. Shulenberger, N.D. Klein, M. Wu, V. Bulović, T. Buonassisi, M.A. Baldo, M.G. Bawendi, Triplet-sensitization by lead halide perovskite thin films for near-infrared-to-visible upconversion. ACS Energy Lett. 4(4), 888–895 (2019)

    Article  CAS  Google Scholar 

  16. S. Amemori, Y. Sasaki, N. Yanai, N. Kimizuka, Near-infrared-to-visible photon upconversion sensitized by a metal complex with spin-forbidden yet strong S0-T1 absorption. J. Am. Chem. Soc. 138(28), 8702–8705 (2016)

    Article  CAS  Google Scholar 

  17. M. Wu, D.N. Congreve, M.W.B. Wilson, J. Jean, N. Geva, M. Welborn, T.V. Voorhis, V. Bulović, M.G. Bawendi, M.A. Baldo, Solid-state infrared-to-visible upconversion sensitized by colloidal nanocrystals. Nat. Photon. 10(1), 31–34 (2015)

    Article  CAS  Google Scholar 

  18. C. Mongin, S. Garakyaraghi, N. Razgoniaeva, M. Zamkov, F.N. Castellano, Direct observation of triplet energy transfer from semiconductor nanocrystals. Science 351(6271), 369–372 (2016)

    Article  CAS  Google Scholar 

  19. M. Mahboub, Z. Huang, M.L. Tang, Efficient infrared-to-visible upconversion with subsolar irradiance. Nano Lett. 16(11), 7169–7175 (2016)

    Article  CAS  Google Scholar 

  20. L. Nienhaus, M. Wu, N. Geva, J.J. Shepherd, M.W.B. Wilson, V. Bulović, T.V. Voorhis, M.A. Baldo, M.G. Bawendi, Speed limit for triplet-exciton transfer in solid-state PbS nanocrystal-sensitized photon upconversion. ACS Nano 11(8), 7848–7857 (2017)

    Article  CAS  Google Scholar 

  21. X. Luo, R. Lai, Y. Li, Y. Han, G. Liang, X. Liu, T. Ding, J. Wang, K. Wu, Triplet energy transfer from CsPbBr3 nanocrystals enabled by quantum confinement. J. Am. Chem. Soc. 141(10), 4186–4190 (2019)

    Article  CAS  Google Scholar 

  22. S. Wieghold, A.S. Bieber, Z.A. VanOrman, L. Daley, M. Leger, J.-P. Correa-Baena, L. Nienhaus, Triplet sensitization by lead halide perovskite thin films for efficient solid-state photon upconversion at subsolar fluxes. Matter 1(3), 705–719 (2019)

    Article  CAS  Google Scholar 

  23. Y. Sasaki, M. Oshikawa, P. Bharmoria, H. Kouno, A. Hayashi-Takagi, M. Sato, I. Ajioka, N. Yanai, N. Kimizuka, Near-infrared optogenetic genome engineering based on photon-upconversion hydrogels. Angew. Chem. Int. Ed. 58(49), 17827–17833 (2019)

    Article  CAS  Google Scholar 

  24. B. Joarder, A. Mallick, Y. Sasaki, M. Kinoshita, R. Haruki, Y. Kawashima, N. Yanai, N. Kimizuka, Near-infrared-to-visible photon upconversion by introducing an S-T absorption sensitizer into a metal-organic framework. ChemNanoMat 6(6), 1–5 (2020)

    Google Scholar 

  25. S. Chan, M. Liu, K. Latham, M. Haruta, H. Kurata, T. Teranishi, Y. Tachibana, Monodisperse and size-tunable PbS colloidal quantum dots via heterogeneous precursors. J. Mater. Chem. C 5(8), 2182–2187 (2017)

    Article  CAS  Google Scholar 

  26. M. Tabachnyk, B. Ehrler, S. Gélinas, M.L. Böhm, B.J. Walker, K.P. Musselman, N.C. Greenham, R.H. Friend, A. Rao, Resonant energy transfer of triplet excitons from pentacene to PbSe nanocrystals. Nat. Mater. 13(11), 1033–1038 (2014)

    Article  CAS  Google Scholar 

  27. N.J. Thompson, M.W.B. Wilson, D.N. Congreve, P.R. Brown, J.M. Scherer, T.S. Bischof, M. Wu, N. Geva, M. Welborn, T.V. Voorhis, V. Bulović, M.G. Bawendi, M.A. Baldo, Energy harvesting of non-emissive triplet excitons in tetracene by emissive PbS nanocrystals. Nat. Mater. 13(11), 1039–1043 (2014)

    Article  CAS  Google Scholar 

  28. J.H. Kim, C.Y. Wong, G.D. Scholes, Exciton fine structure and spin relaxation in semiconductor colloidal quantum dots. Acc. Chem. Res. 42(8), 1037–1046 (2009)

    Article  CAS  Google Scholar 

  29. Z. Huang, M.L. Tang, Semiconductor nanocrystal light absorbers for photon upconversion. J. Phys. Chem. Lett. 9(21), 6198–6206 (2018)

    Article  CAS  Google Scholar 

  30. B.L. Wehrenberg, C. Wang, P. Guyot-Sionnest, Interband and intraband optical studies of PbSe colloidal quantum dots. J. Phys. Chem. B 106(41), 10634–10640 (2002)

    Article  CAS  Google Scholar 

  31. T.N. Singh-Rachford, F.N. Castellano, Triplet sensitized red-to-blue photon upconversion. J. Phys. Chem. Lett. 1(1), 195–200 (2010)

    Article  CAS  Google Scholar 

  32. X. Li, Z. Huang, R. Zavala, M.L. Tang, Distance-dependent triplet energy transfer between CdSe nanocrystals and surface bound anthracene. J. Phys. Chem. Lett. 7(11), 1955–1959 (2016)

    Article  CAS  Google Scholar 

  33. C. Mongin, P. Moroz, M. Zamkov, F.N. Castellano, Thermally activated delayed photoluminescence from pyrenyl-functionalized CdSe quantum dots. Nat. Chem. 10(2), 225–230 (2018)

    Article  CAS  Google Scholar 

  34. W.E. Ford, M.A.J. Rodgers, Reversible triplet-triplet energy transfer within a covalently linked bichromophoric molecule. J. Phys. Chem. 96(7), 2917–2920 (1992)

    Article  CAS  Google Scholar 

  35. D.S. Tyson, F.N. Castellano, Intramolecular singlet and triplet energy transfer in a ruthenium(II) diimine complex containing multiple pyrenyl chromophores. J. Phys. Chem. A 103, 10955–10960 (1999)

    Article  CAS  Google Scholar 

  36. X.-y. Wang, A.D. Guerzo, R.H. Schmehl, Photophysical behavior of transition metal complexes having interacting ligand localized and metal-to-ligand charge transfer states. J. Photochem. Photobiol. C 5(1), 55–77 (2004)

    Article  CAS  Google Scholar 

  37. N.D. McClenaghan, Y. Leydet, B. Maubert, M.T. Indelli, S. Campagna, Excited-state equilibration: a process leading to long-lived metal-to-ligand charge transfer luminescence in supramolecular systems. Coord. Chem. Rev. 249(13–14), 1336–1350 (2005)

    Article  CAS  Google Scholar 

  38. M.L. Rosa, S.A. Denisov, G. Jonusauskas, N.D. McClenaghan, A. Credi, Designed long-lived emission from CdSe quantum dots through reversible electronic energy transfer with a surface-bound chromophore. Angew. Chem. Int. Ed. 57(12), 3104–3107 (2018)

    Article  CAS  Google Scholar 

  39. X. Peng, M.C. Schlamp, A.V. Kadavanich, A.P. Alivisatos, Epitaxial growth of highly luminescent CdSe/CdS core/shell nanocrystals with photostability and electronic accessibility. J. Am. Chem. Soc. 119(30), 7019–7029 (1997)

    Article  CAS  Google Scholar 

  40. J.J. Li, Y.A. Wang, W. Guo, J.C. Keay, T.D. Mishima, M.B. Johnson, X. Peng, Large-scale synthesis of nearly monodisperse CdSe/CdS core/shell nanocrystals using air-stable reagents via successive ion layer adsorption and reaction. J. Am. Chem. Soc. 125(41), 12567–12575 (2003)

    Article  CAS  Google Scholar 

  41. K. Okumura, K. Mase, N. Yanai, N. Kimizuka, Employing core-shell quantum dots as triplet sensitizers for photon upconversion. Chem. Eur. J. 22(23), 7721–7726 (2016)

    Article  CAS  Google Scholar 

  42. M. Mahboub, P. Xia, J.V. Baren, X. Li, C.H. Lui, M.L. Tang, Midgap states in PbS quantum dots induced by Cd and Zn enhance photon upconversion. ACS Energy Lett. 3(4), 767–772 (2018)

    Article  CAS  Google Scholar 

  43. M.P. Hendricks, M.P. Campos, G.T. Cleveland, I.J.-L. Plante, J.S. Owen, A tunable library of substituted thiourea precursors to metal sulfide nanocrystals. Science 348(6240), 1226–1230 (2015)

    Article  CAS  Google Scholar 

  44. Z. Huang, Z. Xu, M. Mahboub, Z. Liang, P. Jaimes, P. Xia, K.R. Graham, M.L. Tang, T. Lian, Enhanced near-infrared-to-visible upconversion by synthetic control of PbS nanocrystal triplet photosensitizers. J. Am. Chem. Soc. 141(25), 9769–9772 (2019)

    Article  CAS  Google Scholar 

  45. K. Miyata, Y. Kurashige, K. Watanabe, T. Sugimoto, S. Takahashi, S. Tanaka, J. Takeya, T. Yanai, Y. Matsumoto, Coherent singlet fission activated by symmetry breaking. Nat. Chem. 9(10), 983 (2017)

    Article  CAS  Google Scholar 

  46. M. Wu, J. Jean, V. Bulović, M.A. Baldo, Interference-enhanced infrared-to-visible upconversion in solid-state thin films sensitized by colloidal nanocrystals. Appl. Phys. Lett. 110(21), 211101 (2017)

    Article  CAS  Google Scholar 

  47. M. Oldenburg, A. Turshatov, D. Busko, M. Jakoby, R. Haldar, K. Chen, G. Emandi, M.O. Senge, C. Wöll, J.M. Hodgkiss, B.S. Richards, I.A. Howard, Enhancing the photoluminescence of surface anchored metal-organic frameworks: mixed linkers and efficient acceptors. Phys. Chem. Chem. Phys. 20(17), 11564–11576 (2018)

    Article  CAS  Google Scholar 

  48. J. Park, M. Xu, F. Li, H.-C. Zhou, 3D long-range triplet migration in a water-stable metal–organic framework for upconversion-based ultralow-power in vivo imaging. J. Am. Chem. Soc. 140(16), 5493–5499 (2018)

    Article  CAS  Google Scholar 

  49. J.M. Rowe, J. Zhu, E.M. Soderstrom, W. Xu, A. Yakovenko, A.J. Morris, Sensitized photon upconversion in anthracene-based zirconium metal–organic frameworks. Chem. Commun. 54(56), 7798–7801 (2018)

    Article  CAS  Google Scholar 

  50. F. Meinardi, M. Ballabio, N. Yanai, N. Kimizuka, A. Bianchi, M. Mauri, R. Simonutti, A. Ronchi, M. Campione, A. Monguzzi, Quasi-thresholdless photon upconversion in metal–organic framework nanocrystals. Nano Lett. 19(3), 2169–2177 (2019)

    Article  CAS  Google Scholar 

  51. S. Amemori, R.K. Gupta, M.L. Böhm, J. Xiao, U. Huynh, T. Oyama, K. Kaneko, A. Rao, N. Yanai, N. Kimizuka, Hybridizing semiconductor nanocrystals with metal–organic frameworks for visible and near-infrared photon upconversion. Dalton Trans. 47(26), 8590–8594 (2018)

    Article  CAS  Google Scholar 

  52. A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131(17), 6050–6051 (2009)

    Article  CAS  Google Scholar 

  53. J. Calabrese, N.L. Jones, R.L. Harlow, N. Herron, D.L. Thorn, Y. Wang, Preparation and characterization of layered lead halide compounds. J. Am. Chem. Soc. 113(6), 2328–2330 (1991)

    Article  CAS  Google Scholar 

  54. M. Era, K. Maeda, T. Tsutsui, Enhanced phosphorescence from naphthalene-chromophore incorporated into lead bromide-based layered perovskite having organic–inorganic superlattice structure. Chem. Phys. Lett. 296(3–4), 417–420 (1998)

    Article  CAS  Google Scholar 

  55. K. Ema, M. Inomata, Y. Kato, H. Kunugita, M. Era, Nearly perfect triplet-triplet energy transfer from Wannier excitons to naphthalene in organic-inorganic hybrid quantum-well materials. Phys. Rev. Lett. 100(25), 257401 (2008)

    Article  CAS  Google Scholar 

  56. K. Okumura, N. Yanai, N. Kimizuka, Visible-to-UV photon upconversion sensitized by Lead halide perovskite nanocrystals. Chem. Lett. 48(11), 1347–1350 (2019)

    Article  CAS  Google Scholar 

  57. J.-P. Sauvage, J.-P. Collin, J.-C. Chambron, S. Guillerez, C. Coudret, V. Balzani, F. Barigelletti, L.D. Cola, L. Flamigni, Ruthenium (II) and osmium (II) bis (terpyridine) complexes in covalently-linked multicomponent systems: synthesis, electrochemical behavior, absorption spectra, and photochemical and photophysical properties. Chem. Rev. 94(4), 993–1019 (1994)

    Article  CAS  Google Scholar 

  58. S. Altobello, R. Argazzi, S. Caramori, C. Contado, S.D. Fré, P. Rubino, C. Choné, G. Larramona, C.A. Bignozzi, Sensitization of nanocrystalline TiO2 with black absorbers based on Os and Ru polypyridine complexes. J. Am. Chem. Soc. 127(44), 15342–15343 (2005)

    Article  CAS  Google Scholar 

  59. T. Kinoshita, J. Fujisawa, J. Nakazaki, S. Uchida, T. Kubo, H. Segawa, Enhancement of near-IR photoelectric conversion in dye-sensitized solar cells using an osmium sensitizer with strong spin-forbidden transition. J. Phys. Chem. Lett. 3(3), 394–398 (2012)

    Article  CAS  Google Scholar 

  60. X. Zhang, S.E. Canton, G. Smolentsev, C.-J. Wallentin, Y. Liu, Q. Kong, K. Attenkofer, A.B. Stickrath, M.W. Mara, L.X. Chen, K. Wärnmark, V. Sundström, Highly accurate excited-state structure of [Os(bpy)2dcbpy]2+ determined by X-ray transient absorption spectroscopy. J. Am. Chem. Soc. 136(24), 8804–8809 (2014)

    Article  CAS  Google Scholar 

  61. Y. Sasaki, S. Amemori, H. Kouno, N. Yanai, N. Kimizuka, Near infrared-to-blue photon upconversion by exploiting direct S-T absorption of a molecular sensitizer. J. Mater. Chem. C 5(21), 5063–5067 (2017)

    Article  CAS  Google Scholar 

  62. D. Liu, Y. Zhao, Z. Wang, K. Xu, J. Zhao, Exploiting the benefit of S0→T1 excitation in triplet-triplet annihilation upconversion to attain large anti-stokes shifts: tuning the triplet state lifetime of a tris(2,2'-bipyridine) osmium(II) complex. Dalton Trans. 47(26), 8619–8628 (2018)

    Article  CAS  Google Scholar 

  63. Y.Y. Cheng, B. Fückel, T. Khoury, R.G.C.R. Clady, N.J. Ekins-Daukes, M.J. Crossley, T.W. Schmidt, Entropically driven photochemical upconversion. J. Phys. Chem. A 115(6), 1047–1053 (2011)

    Article  CAS  Google Scholar 

  64. N. Yanai, N. Kimizuka, New triplet sensitization routes for photon upconversion: thermally activated delayed fluorescence molecules, inorganic nanocrystals, and singlet-to-triplet absorption. Acc. Chem. Res. 50(10), 2487–2495 (2017)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nobuhiro Yanai or Nobuo Kimizuka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sasaki, Y., Yanai, N., Kimizuka, N. (2022). Near-Infrared-to-Visible Photon Upconversion. In: Lissau, J.S., Madsen, M. (eds) Emerging Strategies to Reduce Transmission and Thermalization Losses in Solar Cells. Springer, Cham. https://doi.org/10.1007/978-3-030-70358-5_3

Download citation

Publish with us

Policies and ethics