Skip to main content

Singlet Fission: Mechanisms and Molecular Design

Abstract

Exciton multiplication processes provide a means of overcoming thermalization losses in photovoltaic devices. In this chapter we will introduce one promising exciton multiplication process, termed singlet fission, which occurs in carbon-based semiconductors. After introducing the photophysics of organic semiconductors, we discuss the mechanism of singlet fission and the role of spin and electronic structure in the singlet fission process. Based on this mechanistic discussion we will introduce design rules for singlet fission materials related to their energy level alignment, molecular structure and crystal packing.

Keywords

  • Exciton multiplication
  • Singlet fission
  • Thermalization losses
  • Organic semiconductors

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-70358-5_14
  • Chapter length: 21 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   129.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-70358-5
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   119.99
Price excludes VAT (USA)
Hardcover Book
USD   169.99
Price excludes VAT (USA)
Fig. 14.1
Fig. 14.2
Fig. 14.3
Fig. 14.4
Fig. 14.5
Fig. 14.6
Fig. 14.7

References

  1. A. Köhler, H. Bässler, Electronic Processes in Organic Semiconductors (2015), pp. 389–397. https://doi.org/10.1002/9783527685172

  2. N.J. Turro, V. Ramamurthy, J.C. Scaiano, Modern Molecular Photochemistry of Organic Molecules (University Science Books, Sausalito, 2010)

    Google Scholar 

  3. M.B. Smith, J. Michl, Singlet fission. Chem. Rev. 110, 6891–6936 (2010)

    CAS  CrossRef  Google Scholar 

  4. M.B. Smith, J. Michl, Recent advances in singlet fission. Annu. Rev. Phys. Chem. 64, 361–386 (2013). https://doi.org/10.1146/annurev-physchem-040412-110130.ssion

    CAS  CrossRef  Google Scholar 

  5. R.E. Merrifield, P. Avakian, R.P. Groff, Fission of singlet excitons into pairs of triplet excitons in tetracene crystals. Chem. Phys. Lett. 3, 386–388 (1969)

    CAS  CrossRef  Google Scholar 

  6. N. Geacintov, M. Pope, F. Vogel, Effect of magnetic field on the fluorescence of tetracene crystals: exciton fission. Phys. Rev. Lett. 22, 593–596 (1969)

    CAS  CrossRef  Google Scholar 

  7. C.E. Swenberg, W.T. Stacy, Bimolecular radiationless transitions in crystalline tetracene. Chem. Phys. Lett. 2, 327–328 (1968)

    CAS  CrossRef  Google Scholar 

  8. S. Singh, W.J. Jones, W. Siebrand, B.P. Stoicheff, W.G. Schneider, Laser generation of excitons and fluorescence in anthracene crystals. J. Chem. Phys. 42, 330–342 (1965)

    CAS  CrossRef  Google Scholar 

  9. M.W.B. Wilson et al., Ultrafast dynamics of exciton fission in polycrystalline pentacene. J. Am. Chem. Soc. 133, 11830–11833 (2011)

    CAS  CrossRef  Google Scholar 

  10. J.J. Burdett, C.J. Bardeen, The dynamics of singlet fission in crystalline tetracene and covalent analogs. Acc. Chem. Res. 46, 1312–1320 (2013)

    CAS  CrossRef  Google Scholar 

  11. M. W. B. Wilson et al., Temperature-Independent Singlet Exciton Fission in Tetracene (2013). https://doi.org/10.1021/ja408854u

  12. S. Lukman et al., Tuneable singlet exciton fission and triplet-triplet annihilation in an orthogonal pentacene dimer. Adv. Funct. Mater. 25, 5452–5461 (2015)

    CAS  CrossRef  Google Scholar 

  13. N.V. Korovina et al., Singlet fission in a covalently linked cofacial alkynyltetracene dimer. J. Am. Chem. Soc. 138, 617–627 (2016)

    CAS  CrossRef  Google Scholar 

  14. A.M. Müller, Y.S. Avlasevich, W.W. Schoeller, K. Müllen, C.J. Bardeen, Exciton fission and fusion in bis(tetracene) molecules with different covalent linker structures. J. Am. Chem. Soc. 129, 14240–14250 (2007)

    CrossRef  CAS  Google Scholar 

  15. H.L. Stern et al., Identification of a triplet pair intermediate in singlet exciton fission in solution. Proc. Natl. Acad. Sci. 112, 7656–7661 (2015)

    CAS  CrossRef  Google Scholar 

  16. B.J. Walker, A.J. Musser, D. Beljonne, R.H. Friend, Singlet exciton fission in solution. Nat. Chem. 5, 1019–1024 (2013)

    CAS  CrossRef  Google Scholar 

  17. R.C. Johnson, R.E. Merrifield, Effects of magnetic fields on the mutual annihilation of triplet excitons in anthracene crystals. Phys. Rev. B 1, 896 (1970). https://doi.org/10.1103/PhysRevB.1.896

    CrossRef  Google Scholar 

  18. J.J. Burdett, C.J. Bardeen, Quantum beats in crystalline tetracene delayed fluorescence due to triplet pair coherences produced by direct singlet fission. J. Am. Chem. Soc. 134, 8597–8607 (2012)

    CAS  CrossRef  Google Scholar 

  19. R.P. Groff, P. Avakian, R.E. Merrifield, Coexistence of exciton fission and fusion in tetracene crystals. Phys. Rev. B 1, 815 (1970). https://doi.org/10.1103/PhysRevB.1.815

    CrossRef  Google Scholar 

  20. A. Köhler, H. Bässler, Triplet states in organic semiconductors. Mater. Sci. Eng. R: Rep. 66, 71–109 (2009). https://doi.org/10.1016/j.mser.2009.09.001

    CAS  CrossRef  Google Scholar 

  21. S.R. Yost et al., A transferable model for singlet-fission kinetics. Nat. Chem. 6, 492–497 (2014)

    CAS  CrossRef  Google Scholar 

  22. T.W. Schmidt, A Marcus-Hush perspective on adiabatic singlet fission. J. Chem. Phys. 151, 054305 (2019)

    CrossRef  CAS  Google Scholar 

  23. A.J. Musser et al., Evidence for conical intersection dynamics mediating ultrafast singlet exciton fission. Nat. Phys. 11, 352–357 (2015)

    CAS  CrossRef  Google Scholar 

  24. W.L. Chan, M. Ligges, X.Y. Zhu, The energy barrier in singlet fission can be overcome through coherent coupling and entropic gain. Nat. Chem. 4, 840–845 (2012)

    CAS  CrossRef  Google Scholar 

  25. D.L. Dexter, A theory of sensitized luminescence in solids. J. Chem. Phys. (1953). https://doi.org/10.1063/1.1699044

  26. A. Köhler, H. Bässler, What controls triplet exciton transfer in organic semiconductors? J. Mater. Chem. 21, 4003–4011 (2011)

    CrossRef  Google Scholar 

  27. L. Sudha Devi et al., Triplet energy transfer in conjugated polymers. I. Experimental investigation of a weakly disordered compound. Phys. Rev. B Condens. Matter Mater. Phys. 78, 045210 (2008)

    CrossRef  CAS  Google Scholar 

  28. H.L. Stern et al., Vibronically coherent ultrafast triplet-pair formation and subsequent thermally activated dissociation control efficient endothermic singlet fission. Nat. Chem. 9(12), 1205–1212 (2017). https://doi.org/10.1038/nchem.2856

    CAS  CrossRef  Google Scholar 

  29. S. Reineke, M.A. Baldo, Room temperature triplet state spectroscopy of organic semiconductors. Sci. Rep. 4, 1–8 (2014)

    Google Scholar 

  30. M.R. Padhye, S.P. McGlynn, M. Kasha, Lowest triplet state of anthracene. J. Chem. Phys. 24, 588–594 (1956)

    CAS  CrossRef  Google Scholar 

  31. G.N. Lewis, M. Kasha, Phosphorescence and the triplet state. J. Am. Chem. Soc. 66, 2100–2116 (1944)

    CAS  CrossRef  Google Scholar 

  32. C. Jundt et al., Exciton dynamics in pentacene thin films studied by pump-probe spectroscopy. Chem. Phys. Lett. 241, 84–88 (1995)

    CAS  CrossRef  Google Scholar 

  33. R.H. Friend et al., Excitons and charges at organic semiconductor heterojunctions. Faraday Discuss. 155, 339–348 (2012)

    CAS  CrossRef  Google Scholar 

  34. V.K. Thorsmølle et al., Morphology effectively controls singlet-triplet exciton relaxation and charge transport in organic semiconductors. Phys. Rev. Lett. 102, 3–6 (2009)

    CrossRef  CAS  Google Scholar 

  35. E. Busby et al., Multiphonon relaxation slows singlet fission in crystalline hexacene. J. Am. Chem. Soc. 136, 10654–10660 (2014)

    CAS  CrossRef  Google Scholar 

  36. B. Ehrler, M.W.B. Wilson, A. Rao, R.H. Friend, N.C. Greenham, Singlet exciton fission-sensitized infrared quantum dot solar cells. Nano Lett. 12, 1053–1057 (2012)

    CAS  CrossRef  Google Scholar 

  37. J. Lee et al., Singlet exciton fission photovoltaics. Acc. Chem. Res. 46, 1300–1311 (2013)

    CAS  CrossRef  Google Scholar 

  38. D.N. Congreve et al., External quantum efficiency above 100% in a singlet-exciton-fission–based organic photovoltaic cell. Science 340, 334–338 (2013)

    CAS  CrossRef  Google Scholar 

  39. R.P. Groff, P. Avakian, R.E. Merrifield, Magnetic field dependence of delayed fluorescence from tetracene crystals. J. Lumin. 1–2, 218–223 (1970). https://doi.org/10.1016/0022-2313(70)90036-0

    CrossRef  Google Scholar 

  40. R.C. Johnson, R.E. Merrifield, P. Avakian, R.B. Flippen, Effects of magnetic fields on the mutual annihilation of triplet excitons in molecular crystals. Phys. Rev. Lett. 19, 285 (1967). https://doi.org/10.1103/PhysRevLett.19.285

    CAS  CrossRef  Google Scholar 

  41. Y.Y. Cheng et al., On the efficiency limit of triplet–triplet annihilation for photochemical upconversion. Phys. Chem. Chem. Phys. 12, 66–71 (2010)

    CAS  CrossRef  Google Scholar 

  42. B. Dick, B. Nickel, Accessibility of the lowest quintet state of organic molecules through triplet-triplet annihilation; an indo ci study. Chem. Phys. 78, 1–16 (1983)

    CAS  CrossRef  Google Scholar 

  43. S.L. Bayliss et al., Site-selective measurement of coupled spin pairs in an organic semiconductor. Proc. Natl. Acad. Sci. 115, 5077–5082 (2018)

    CAS  CrossRef  Google Scholar 

  44. M. Chen et al., Quintet-triplet mixing determines the fate of the multiexciton state produced by singlet fission in a terrylenediimide dimer at room temperature. Proc. Natl. Acad. Sci. U. S. A. 116, 8178–8183 (2019)

    CAS  CrossRef  Google Scholar 

  45. H. Benk, H. Sixl, Theory of two coupled triplet states: application to bicarbene structures. Mol. Phys. 42, 779–801 (1981)

    CAS  CrossRef  Google Scholar 

  46. L.R. Weiss et al., Strongly exchange-coupled triplet pairs in an organic semiconductor. Nat. Phys. 13, 176–181 (2017)

    CAS  CrossRef  Google Scholar 

  47. M.J.Y. Tayebjee et al., Quintet multiexciton dynamics in singlet fission. Nat. Phys. 13, 182–188 (2017)

    CAS  CrossRef  Google Scholar 

  48. R.E. Merrifield, Diffusion and mutual annihilation of triplet excitons in organic crystals. Acc. Chem. Res. 1, 129–135 (1968). https://doi.org/10.1021/ar50005a001

    CAS  CrossRef  Google Scholar 

  49. G.M. Akselrod et al., Visualization of exciton transport in ordered and disordered molecular solids. Nat. Commun. 5, 3646 (2014). https://doi.org/10.1038/ncomms4646

    CAS  CrossRef  Google Scholar 

  50. M. Born et al., Slow hopping and spin dephasing of Coulombically bound polaron pairs in an organic semiconductor at room temperature. J. Am. Chem. Soc. 1, 489–564 (2013)

    Google Scholar 

  51. Y. Wan et al., Cooperative singlet and triplet exciton transport in tetracene crystals visualized by ultrafast microscopy. Nat. Chem. 7, 785–792 (2015). https://doi.org/10.1038/nchem.2348

    CAS  CrossRef  Google Scholar 

  52. Y.J. Bae et al., Singlet fission in 9,10-bis(phenylethynyl)anthracene thin films. J. Am. Chem. Soc. 140, 15140–15144 (2018)

    CAS  CrossRef  Google Scholar 

  53. B. Manna, A. Nandi, R. Ghosh, Ultrafast singlet exciton fission dynamics in 9,10-bis(phenylethynyl)anthracene nanoaggregates and thin films. J. Phys. Chem. C 122, 21047–21055 (2018)

    CAS  CrossRef  Google Scholar 

  54. C.F. Perkinson et al., Discovery of blue singlet exciton fission molecules via a high-throughput virtual screening and experimental approach. J. Chem. Phys. 151 (2019)

    Google Scholar 

  55. S. Jana, A.L. Yapamanu, S. Umapathy, Unraveling structural dynamics in isoenergetic excited S1 and multi-excitonic 1(TT) states of 9,10-bis(phenylethynyl)anthracene (BPEA) in solution: via ultrafast Raman loss spectroscopy. Phys. Chem. Chem. Phys. 21, 14341–14349 (2019)

    CAS  CrossRef  Google Scholar 

  56. V. Kocevski, O. Eriksson, C. Gerard, D.D. Sarma, J. Rusz, Influence of dimensionality and interface type on optical and electronic properties of CdS/ZnS core-shell nanocrystals—a first-principles study. J. Chem. Phys. 143 (2015)

    Google Scholar 

  57. Y. Tomkiewicz, R.P. Groff, P. Avakian, Spectroscopic approach to energetics of exciton fission and fusion in tetracene crystals. J. Chem. Phys. 54, 4504–4507 (1971)

    CAS  CrossRef  Google Scholar 

  58. J.J. Burdett, A.M. Müller, D. Gosztola, C.J. Bardeen, Excited state dynamics in solid and monomeric tetracene: the roles of superradiance and exciton fission. J. Chem. Phys. 133 (2010)

    Google Scholar 

  59. G.B. Piland, C.J. Bardeen, How morphology affects singlet fission in crystalline tetracene. J. Phys. Chem. Lett. 6, 1841–1846 (2015)

    CAS  CrossRef  Google Scholar 

  60. A.F. Morrison, J.M. Herbert, Evidence for singlet fission driven by vibronic coherence in crystalline tetracene. J. Phys. Chem. Lett. 8, 1442–1448 (2017)

    CAS  CrossRef  Google Scholar 

  61. S.L. Bayliss et al., Tuning spin dynamics in crystalline tetracene. J. Phys. Chem. Lett. 10, 1908–1913 (2019)

    CAS  CrossRef  Google Scholar 

  62. N.R. Monahan et al., Dynamics of the triplet-pair state reveals the likely coexistence of coherent and incoherent singlet fission in crystalline hexacene. Nat. Chem. 9, 341–346 (2017)

    CAS  CrossRef  Google Scholar 

  63. S.A. Odom, S.R. Parkin, J.E. Anthony, Tetracene derivatives as potential red emitters for organic LEDs. Org. Lett. 5, 4245–4248 (2003)

    CAS  CrossRef  Google Scholar 

  64. Y.-F. Lim, Y. Shu, S.R. Parkin, J.E. Anthony, G.G. Malliaras, Soluble n-type pentacene derivatives as novel acceptors for organic solar cells. J. Mater. Chem. 19, 3049 (2009)

    CAS  CrossRef  Google Scholar 

  65. C.B. Dover et al., Endothermic singlet fission is hindered by excimer formation. Nat. Chem. 10, 305–310 (2018)

    CAS  CrossRef  Google Scholar 

  66. D.L. Dexter, Two ideas on energy transfer phenomena: ion-pair effects involving the OH stretching mode, and sensitization of photovoltaic cells. J. Lumin. 18–19, 779–784 (1979)

    CrossRef  Google Scholar 

  67. R. MacQueen et al., Crystalline silicon solar cells with tetracene interlayers: the path to silicon-singlet fission heterojunction devices. Mater. Horiz. 5, 1065–1075 (2018)

    CAS  CrossRef  Google Scholar 

  68. M. Einzinger et al., Sensitization of silicon by singlet exciton fission in tetracene. Nature 571, 90–94 (2019)

    CAS  CrossRef  Google Scholar 

  69. P.D. Reusswig, D.N. Congreve, N.J. Thompson, M.A. Baldo, Enhanced external quantum efficiency in an organic photovoltaic cell via singlet fission exciton sensitizer. Appl. Phys. Lett. 101, 113304 (2012)

    CrossRef  CAS  Google Scholar 

  70. T.C. Wu et al., Singlet fission efficiency in tetracene-based organic solar cells. Appl. Phys. Lett. 104, 193901 (2014)

    CrossRef  CAS  Google Scholar 

  71. N.J.L.K. Davis et al., Singlet fission and triplet transfer to PbS quantum dots in TIPS-tetracene carboxylic acid ligands. J. Phys. Chem. Lett. 9, 1454–1460 (2018)

    CAS  CrossRef  Google Scholar 

  72. J.R. Allardice et al., Engineering molecular ligand shells on quantum dots for quantitative harvesting of triplet excitons generated by singlet fission. J. Am. Chem. Soc. 141, 12907–12915 (2019)

    CAS  CrossRef  Google Scholar 

  73. I. Paci et al., Singlet fission for dye-sensitized solar cells: can a suitable sensitizer be found? J. Am. Chem. Soc. 128, 16546–16553 (2006)

    CAS  CrossRef  Google Scholar 

  74. J.C. Johnson, A.J. Nozik, J. Michl, High triplet yield from singlet fission in a thin film of 1,3-diphenylisobenzofuran. J. Am. Chem. Soc. 132, 16302–16303 (2010)

    CAS  CrossRef  Google Scholar 

  75. J.C. Johnson et al., Toward designed singlet fission: solution photophysics of two indirectly coupled covalent dimers of 1,3-diphenylisobenzofuran. J. Phys. Chem. B 117, 4680–4695 (2013)

    CAS  CrossRef  Google Scholar 

  76. J.N. Schrauben, J.L. Ryerson, J. Michl, J.C. Johnson, Mechanism of singlet fission in thin films of 1,3-diphenylisobenzofuran. J. Am. Chem. Soc. 136, 7363–7373 (2014)

    CAS  CrossRef  Google Scholar 

  77. S. Lukman et al., Efficient singlet fission and triplet-pair emission in a family of zethrene diradicaloids. J. Am. Chem. Soc. 139, 18376–18385 (2017)

    CAS  CrossRef  Google Scholar 

  78. A. Akdag, Z.K. Havlas, J. Michl, Search for a small chromophore with efficient singlet fission: biradicaloid heterocycles. J. Am. Chem. Soc. 134, 14624–14631 (2012)

    CAS  CrossRef  Google Scholar 

  79. J. Wen, Z. Havlas, J. Michl, Captodatively stabilized biradicaloids as chromophores for singlet fission. J. Am. Chem. Soc. 137, 165–172 (2015)

    CAS  CrossRef  Google Scholar 

  80. D. López-Carballeira, D. Casanova, F. Ruipérez, Theoretical design of conjugated diradicaloids as singlet fission sensitizers: quinones and methylene derivatives. Phys. Chem. Chem. Phys. 19, 30227–30238 (2017)

    CrossRef  Google Scholar 

  81. T. Minami, M. Nakano, Diradical character view of singlet fission. J. Phys. Chem. Lett. 3, 145–150 (2012)

    CAS  CrossRef  Google Scholar 

  82. S. Ito, T. Minami, M. Nakano, Diradical character based design for singlet fission of condensed-ring systems with 4 n πelectrons. J. Phys. Chem. C 116, 19729–19736 (2012)

    CAS  CrossRef  Google Scholar 

  83. H. Yang, M. Chen, X. Song, Y. Bu, Structural fluctuation governed dynamic diradical character in pentacene. Phys. Chem. Chem. Phys. 17, 13904–13914 (2015)

    CAS  CrossRef  Google Scholar 

  84. J.N. Schrauben et al., Photocurrent enhanced by singlet fission in a dye-sensitized solar cell. ACS Appl. Mater. Interfaces 7, 2286–2293 (2015)

    CAS  CrossRef  Google Scholar 

  85. T. Banerjee et al., Diphenylisobenzofuran bound to nanocrystalline metal oxides: excimer formation, singlet fission, electron injection, and low energy sensitization. J. Phys. Chem. C 122, 28478–28490 (2018)

    CAS  CrossRef  Google Scholar 

  86. H. Liu et al., A covalently linked tetracene trimer: synthesis and singlet exciton fission property. Org. Lett. 19, 580–583 (2017)

    CrossRef  CAS  Google Scholar 

  87. S. Nakamura et al., Quantitative sequential photoenergy conversion process from singlet fission to intermolecular two-electron transfers utilizing tetracene dimer. ACS Energy Lett. 4, 26–31 (2018). https://doi.org/10.1021/acsenergylett.8b01964

    CAS  CrossRef  Google Scholar 

  88. Y. Matsui et al., Exergonic intramolecular singlet fission of an adamantane-linked tetracene dyad via twin quintet multiexcitons. J. Phys. Chem. C 123, 18813–18823 (2019)

    CAS  CrossRef  Google Scholar 

  89. J. Zirzlmeier et al., Singlet fission in pentacene dimers. Proc. Natl. Acad. Sci. 112, 5325–5330 (2015)

    CAS  CrossRef  Google Scholar 

  90. S.N. Sanders et al., Quantitative intramolecular singlet fission in bipentacenes. J. Am. Chem. Soc. 137, 8965–8972 (2015)

    CAS  CrossRef  Google Scholar 

  91. S. Lukman et al., Tuning the role of charge-transfer states in intramolecular singlet exciton fission through side-group engineering. Nat. Commun. 7, 13622 (2016)

    CAS  CrossRef  Google Scholar 

  92. S.N. Sanders et al., Exciton correlations in intramolecular singlet fission. J. Am. Chem. Soc. 138, 7289–7297 (2016)

    CAS  CrossRef  Google Scholar 

  93. S.N. Sanders et al., Intramolecular singlet fission in oligoacene heterodimers. Angew. Chem. Int. Ed. Engl. 55, 3434–3438 (2016). https://doi.org/10.1002/ange.201510632

    CrossRef  Google Scholar 

  94. E.G. Fuemmeler et al., A direct mechanism of ultrafast intramolecular singlet fission in pentacene dimers. ACS Cent. Sci. 2, 316–324 (2016)

    CAS  CrossRef  Google Scholar 

  95. E. Kumarasamy et al., Tuning singlet fission in π-bridge-π chromophores. J. Am. Chem. Soc. 139, 12488–12494 (2017)

    CAS  CrossRef  Google Scholar 

  96. C.K. Yong et al., The entangled triplet pair state in acene and heteroacene materials. Nat. Commun. 8, 15953 (2017)

    CAS  CrossRef  Google Scholar 

  97. J.C. Dean et al., Photophysical characterization and time-resolved spectroscopy of a anthradithiophene dimer: exploring the role of conformation in singlet fission. Phys. Chem. Chem. Phys. 19, 23162–23175 (2017)

    CAS  CrossRef  Google Scholar 

  98. A.B. Pun et al., Triplet harvesting from intramolecular singlet fission in polytetracene. Adv. Mater. 29, 1701416 (2017)

    CrossRef  CAS  Google Scholar 

  99. R. Montero et al., Singlet fission mediated photophysics of BODIPY dimers. J. Phys. Chem. Lett. 9, 641–646 (2018)

    CAS  CrossRef  Google Scholar 

  100. A.B. Pun et al., Ultra-fast intramolecular singlet fission to persistent multiexcitons by molecular design. Nat. Chem. 11, 821–828 (2019)

    CAS  CrossRef  Google Scholar 

  101. C. Hetzer, D.M. Guldi, R.R. Tykwinski, Pentacene dimers as a critical tool for the investigation of intramolecular singlet fission. Chem. A Eur. J. 24, 8245–8257 (2018)

    CAS  CrossRef  Google Scholar 

  102. E. Busby et al., A design strategy for intramolecular singlet fission mediated by charge-transfer states in donor-acceptor organic materials. Nat. Mater. 14, 426–433 (2015)

    CAS  CrossRef  Google Scholar 

  103. S.N. Sanders et al., Singlet fission in polypentacene. Chem 1 (2016)

    Google Scholar 

  104. J. Hu et al., New insights into the design of conjugated polymers for intramolecular singlet fission. Nat. Commun. 9 (2018)

    Google Scholar 

  105. L.M. Yablon et al., Persistent multiexcitons from polymers with pendent pentacenes. J. Am. Chem. Soc. 141, 9564–9569 (2019)

    CAS  CrossRef  Google Scholar 

  106. E.A. Buchanan, J. Michl, Packing guidelines for optimizing singlet fission matrix elements in noncovalent dimers. J. Am. Chem. Soc. 139, 15572–15575 (2017)

    CAS  CrossRef  Google Scholar 

  107. A. Zaykov et al., Singlet fission rate: optimized packing of a molecular pair. Ethylene as a model. J. Am. Chem. Soc. 141, 17729–17743 (2019)

    CAS  CrossRef  Google Scholar 

  108. D. Padula, Ö.H. Omar, T. Nematiaram, A. Troisi, Singlet fission molecules among known compounds: finding a few needles in a haystack. Energy Environ. Sci. 12, 2412–2416 (2019)

    CrossRef  Google Scholar 

  109. O. El Bakouri, J.R. Smith, H. Ottosson, Strategies for design of potential singlet fission chromophores utilizing a combination of ground state and excited state aromaticity rules. J. Am. Chem. Soc. 142, 5602–5617 (2020)

    CrossRef  CAS  Google Scholar 

  110. K.J. Fallon et al., Exploiting excited-state aromaticity to design highly stable singlet fission materials. J. Am. Chem. Soc. 141, 13867–13876 (2019)

    CAS  CrossRef  Google Scholar 

  111. M. Rosenberg, C. Dahlstrand, K. Kilså, H. Ottosson, Excited state aromaticity and antiaromaticity: opportunities for photophysical and photochemical rationalizations. Chem. Rev. 114, 5379–5425 (2014)

    CAS  CrossRef  Google Scholar 

  112. Y.M. Sung et al., Reversal of Hückel (anti)aromaticity in the lowest triplet states of hexaphyrins and spectroscopic evidence for Baird’s rule. Nat. Chem. 7, 418–422 (2015)

    CAS  CrossRef  Google Scholar 

  113. J. Oh et al., Unraveling excited-singlet-state aromaticity via vibrational analysis. Chem 3, 870–880 (2017)

    CAS  CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor Gray .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Gray, V., Weiss, L., Rao, A. (2022). Singlet Fission: Mechanisms and Molecular Design. In: Lissau, J.S., Madsen, M. (eds) Emerging Strategies to Reduce Transmission and Thermalization Losses in Solar Cells. Springer, Cham. https://doi.org/10.1007/978-3-030-70358-5_14

Download citation