Skip to main content

Abstract

Exciton multiplication processes provide a means of overcoming thermalization losses in photovoltaic devices. In this chapter we will introduce one promising exciton multiplication process, termed singlet fission, which occurs in carbon-based semiconductors. After introducing the photophysics of organic semiconductors, we discuss the mechanism of singlet fission and the role of spin and electronic structure in the singlet fission process. Based on this mechanistic discussion we will introduce design rules for singlet fission materials related to their energy level alignment, molecular structure and crystal packing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A. Köhler, H. Bässler, Electronic Processes in Organic Semiconductors (2015), pp. 389–397. https://doi.org/10.1002/9783527685172

  2. N.J. Turro, V. Ramamurthy, J.C. Scaiano, Modern Molecular Photochemistry of Organic Molecules (University Science Books, Sausalito, 2010)

    Google Scholar 

  3. M.B. Smith, J. Michl, Singlet fission. Chem. Rev. 110, 6891–6936 (2010)

    Article  CAS  Google Scholar 

  4. M.B. Smith, J. Michl, Recent advances in singlet fission. Annu. Rev. Phys. Chem. 64, 361–386 (2013). https://doi.org/10.1146/annurev-physchem-040412-110130.ssion

    Article  CAS  Google Scholar 

  5. R.E. Merrifield, P. Avakian, R.P. Groff, Fission of singlet excitons into pairs of triplet excitons in tetracene crystals. Chem. Phys. Lett. 3, 386–388 (1969)

    Article  CAS  Google Scholar 

  6. N. Geacintov, M. Pope, F. Vogel, Effect of magnetic field on the fluorescence of tetracene crystals: exciton fission. Phys. Rev. Lett. 22, 593–596 (1969)

    Article  CAS  Google Scholar 

  7. C.E. Swenberg, W.T. Stacy, Bimolecular radiationless transitions in crystalline tetracene. Chem. Phys. Lett. 2, 327–328 (1968)

    Article  CAS  Google Scholar 

  8. S. Singh, W.J. Jones, W. Siebrand, B.P. Stoicheff, W.G. Schneider, Laser generation of excitons and fluorescence in anthracene crystals. J. Chem. Phys. 42, 330–342 (1965)

    Article  CAS  Google Scholar 

  9. M.W.B. Wilson et al., Ultrafast dynamics of exciton fission in polycrystalline pentacene. J. Am. Chem. Soc. 133, 11830–11833 (2011)

    Article  CAS  Google Scholar 

  10. J.J. Burdett, C.J. Bardeen, The dynamics of singlet fission in crystalline tetracene and covalent analogs. Acc. Chem. Res. 46, 1312–1320 (2013)

    Article  CAS  Google Scholar 

  11. M. W. B. Wilson et al., Temperature-Independent Singlet Exciton Fission in Tetracene (2013). https://doi.org/10.1021/ja408854u

  12. S. Lukman et al., Tuneable singlet exciton fission and triplet-triplet annihilation in an orthogonal pentacene dimer. Adv. Funct. Mater. 25, 5452–5461 (2015)

    Article  CAS  Google Scholar 

  13. N.V. Korovina et al., Singlet fission in a covalently linked cofacial alkynyltetracene dimer. J. Am. Chem. Soc. 138, 617–627 (2016)

    Article  CAS  Google Scholar 

  14. A.M. Müller, Y.S. Avlasevich, W.W. Schoeller, K. Müllen, C.J. Bardeen, Exciton fission and fusion in bis(tetracene) molecules with different covalent linker structures. J. Am. Chem. Soc. 129, 14240–14250 (2007)

    Article  CAS  Google Scholar 

  15. H.L. Stern et al., Identification of a triplet pair intermediate in singlet exciton fission in solution. Proc. Natl. Acad. Sci. 112, 7656–7661 (2015)

    Article  CAS  Google Scholar 

  16. B.J. Walker, A.J. Musser, D. Beljonne, R.H. Friend, Singlet exciton fission in solution. Nat. Chem. 5, 1019–1024 (2013)

    Article  CAS  Google Scholar 

  17. R.C. Johnson, R.E. Merrifield, Effects of magnetic fields on the mutual annihilation of triplet excitons in anthracene crystals. Phys. Rev. B 1, 896 (1970). https://doi.org/10.1103/PhysRevB.1.896

    Article  Google Scholar 

  18. J.J. Burdett, C.J. Bardeen, Quantum beats in crystalline tetracene delayed fluorescence due to triplet pair coherences produced by direct singlet fission. J. Am. Chem. Soc. 134, 8597–8607 (2012)

    Article  CAS  Google Scholar 

  19. R.P. Groff, P. Avakian, R.E. Merrifield, Coexistence of exciton fission and fusion in tetracene crystals. Phys. Rev. B 1, 815 (1970). https://doi.org/10.1103/PhysRevB.1.815

    Article  Google Scholar 

  20. A. Köhler, H. Bässler, Triplet states in organic semiconductors. Mater. Sci. Eng. R: Rep. 66, 71–109 (2009). https://doi.org/10.1016/j.mser.2009.09.001

    Article  CAS  Google Scholar 

  21. S.R. Yost et al., A transferable model for singlet-fission kinetics. Nat. Chem. 6, 492–497 (2014)

    Article  CAS  Google Scholar 

  22. T.W. Schmidt, A Marcus-Hush perspective on adiabatic singlet fission. J. Chem. Phys. 151, 054305 (2019)

    Article  CAS  Google Scholar 

  23. A.J. Musser et al., Evidence for conical intersection dynamics mediating ultrafast singlet exciton fission. Nat. Phys. 11, 352–357 (2015)

    Article  CAS  Google Scholar 

  24. W.L. Chan, M. Ligges, X.Y. Zhu, The energy barrier in singlet fission can be overcome through coherent coupling and entropic gain. Nat. Chem. 4, 840–845 (2012)

    Article  CAS  Google Scholar 

  25. D.L. Dexter, A theory of sensitized luminescence in solids. J. Chem. Phys. (1953). https://doi.org/10.1063/1.1699044

  26. A. Köhler, H. Bässler, What controls triplet exciton transfer in organic semiconductors? J. Mater. Chem. 21, 4003–4011 (2011)

    Article  Google Scholar 

  27. L. Sudha Devi et al., Triplet energy transfer in conjugated polymers. I. Experimental investigation of a weakly disordered compound. Phys. Rev. B Condens. Matter Mater. Phys. 78, 045210 (2008)

    Article  CAS  Google Scholar 

  28. H.L. Stern et al., Vibronically coherent ultrafast triplet-pair formation and subsequent thermally activated dissociation control efficient endothermic singlet fission. Nat. Chem. 9(12), 1205–1212 (2017). https://doi.org/10.1038/nchem.2856

    Article  CAS  Google Scholar 

  29. S. Reineke, M.A. Baldo, Room temperature triplet state spectroscopy of organic semiconductors. Sci. Rep. 4, 1–8 (2014)

    Google Scholar 

  30. M.R. Padhye, S.P. McGlynn, M. Kasha, Lowest triplet state of anthracene. J. Chem. Phys. 24, 588–594 (1956)

    Article  CAS  Google Scholar 

  31. G.N. Lewis, M. Kasha, Phosphorescence and the triplet state. J. Am. Chem. Soc. 66, 2100–2116 (1944)

    Article  CAS  Google Scholar 

  32. C. Jundt et al., Exciton dynamics in pentacene thin films studied by pump-probe spectroscopy. Chem. Phys. Lett. 241, 84–88 (1995)

    Article  CAS  Google Scholar 

  33. R.H. Friend et al., Excitons and charges at organic semiconductor heterojunctions. Faraday Discuss. 155, 339–348 (2012)

    Article  CAS  Google Scholar 

  34. V.K. Thorsmølle et al., Morphology effectively controls singlet-triplet exciton relaxation and charge transport in organic semiconductors. Phys. Rev. Lett. 102, 3–6 (2009)

    Article  CAS  Google Scholar 

  35. E. Busby et al., Multiphonon relaxation slows singlet fission in crystalline hexacene. J. Am. Chem. Soc. 136, 10654–10660 (2014)

    Article  CAS  Google Scholar 

  36. B. Ehrler, M.W.B. Wilson, A. Rao, R.H. Friend, N.C. Greenham, Singlet exciton fission-sensitized infrared quantum dot solar cells. Nano Lett. 12, 1053–1057 (2012)

    Article  CAS  Google Scholar 

  37. J. Lee et al., Singlet exciton fission photovoltaics. Acc. Chem. Res. 46, 1300–1311 (2013)

    Article  CAS  Google Scholar 

  38. D.N. Congreve et al., External quantum efficiency above 100% in a singlet-exciton-fission–based organic photovoltaic cell. Science 340, 334–338 (2013)

    Article  CAS  Google Scholar 

  39. R.P. Groff, P. Avakian, R.E. Merrifield, Magnetic field dependence of delayed fluorescence from tetracene crystals. J. Lumin. 1–2, 218–223 (1970). https://doi.org/10.1016/0022-2313(70)90036-0

    Article  Google Scholar 

  40. R.C. Johnson, R.E. Merrifield, P. Avakian, R.B. Flippen, Effects of magnetic fields on the mutual annihilation of triplet excitons in molecular crystals. Phys. Rev. Lett. 19, 285 (1967). https://doi.org/10.1103/PhysRevLett.19.285

    Article  CAS  Google Scholar 

  41. Y.Y. Cheng et al., On the efficiency limit of triplet–triplet annihilation for photochemical upconversion. Phys. Chem. Chem. Phys. 12, 66–71 (2010)

    Article  CAS  Google Scholar 

  42. B. Dick, B. Nickel, Accessibility of the lowest quintet state of organic molecules through triplet-triplet annihilation; an indo ci study. Chem. Phys. 78, 1–16 (1983)

    Article  CAS  Google Scholar 

  43. S.L. Bayliss et al., Site-selective measurement of coupled spin pairs in an organic semiconductor. Proc. Natl. Acad. Sci. 115, 5077–5082 (2018)

    Article  CAS  Google Scholar 

  44. M. Chen et al., Quintet-triplet mixing determines the fate of the multiexciton state produced by singlet fission in a terrylenediimide dimer at room temperature. Proc. Natl. Acad. Sci. U. S. A. 116, 8178–8183 (2019)

    Article  CAS  Google Scholar 

  45. H. Benk, H. Sixl, Theory of two coupled triplet states: application to bicarbene structures. Mol. Phys. 42, 779–801 (1981)

    Article  CAS  Google Scholar 

  46. L.R. Weiss et al., Strongly exchange-coupled triplet pairs in an organic semiconductor. Nat. Phys. 13, 176–181 (2017)

    Article  CAS  Google Scholar 

  47. M.J.Y. Tayebjee et al., Quintet multiexciton dynamics in singlet fission. Nat. Phys. 13, 182–188 (2017)

    Article  CAS  Google Scholar 

  48. R.E. Merrifield, Diffusion and mutual annihilation of triplet excitons in organic crystals. Acc. Chem. Res. 1, 129–135 (1968). https://doi.org/10.1021/ar50005a001

    Article  CAS  Google Scholar 

  49. G.M. Akselrod et al., Visualization of exciton transport in ordered and disordered molecular solids. Nat. Commun. 5, 3646 (2014). https://doi.org/10.1038/ncomms4646

    Article  CAS  Google Scholar 

  50. M. Born et al., Slow hopping and spin dephasing of Coulombically bound polaron pairs in an organic semiconductor at room temperature. J. Am. Chem. Soc. 1, 489–564 (2013)

    Google Scholar 

  51. Y. Wan et al., Cooperative singlet and triplet exciton transport in tetracene crystals visualized by ultrafast microscopy. Nat. Chem. 7, 785–792 (2015). https://doi.org/10.1038/nchem.2348

    Article  CAS  Google Scholar 

  52. Y.J. Bae et al., Singlet fission in 9,10-bis(phenylethynyl)anthracene thin films. J. Am. Chem. Soc. 140, 15140–15144 (2018)

    Article  CAS  Google Scholar 

  53. B. Manna, A. Nandi, R. Ghosh, Ultrafast singlet exciton fission dynamics in 9,10-bis(phenylethynyl)anthracene nanoaggregates and thin films. J. Phys. Chem. C 122, 21047–21055 (2018)

    Article  CAS  Google Scholar 

  54. C.F. Perkinson et al., Discovery of blue singlet exciton fission molecules via a high-throughput virtual screening and experimental approach. J. Chem. Phys. 151 (2019)

    Google Scholar 

  55. S. Jana, A.L. Yapamanu, S. Umapathy, Unraveling structural dynamics in isoenergetic excited S1 and multi-excitonic 1(TT) states of 9,10-bis(phenylethynyl)anthracene (BPEA) in solution: via ultrafast Raman loss spectroscopy. Phys. Chem. Chem. Phys. 21, 14341–14349 (2019)

    Article  CAS  Google Scholar 

  56. V. Kocevski, O. Eriksson, C. Gerard, D.D. Sarma, J. Rusz, Influence of dimensionality and interface type on optical and electronic properties of CdS/ZnS core-shell nanocrystals—a first-principles study. J. Chem. Phys. 143 (2015)

    Google Scholar 

  57. Y. Tomkiewicz, R.P. Groff, P. Avakian, Spectroscopic approach to energetics of exciton fission and fusion in tetracene crystals. J. Chem. Phys. 54, 4504–4507 (1971)

    Article  CAS  Google Scholar 

  58. J.J. Burdett, A.M. Müller, D. Gosztola, C.J. Bardeen, Excited state dynamics in solid and monomeric tetracene: the roles of superradiance and exciton fission. J. Chem. Phys. 133 (2010)

    Google Scholar 

  59. G.B. Piland, C.J. Bardeen, How morphology affects singlet fission in crystalline tetracene. J. Phys. Chem. Lett. 6, 1841–1846 (2015)

    Article  CAS  Google Scholar 

  60. A.F. Morrison, J.M. Herbert, Evidence for singlet fission driven by vibronic coherence in crystalline tetracene. J. Phys. Chem. Lett. 8, 1442–1448 (2017)

    Article  CAS  Google Scholar 

  61. S.L. Bayliss et al., Tuning spin dynamics in crystalline tetracene. J. Phys. Chem. Lett. 10, 1908–1913 (2019)

    Article  CAS  Google Scholar 

  62. N.R. Monahan et al., Dynamics of the triplet-pair state reveals the likely coexistence of coherent and incoherent singlet fission in crystalline hexacene. Nat. Chem. 9, 341–346 (2017)

    Article  CAS  Google Scholar 

  63. S.A. Odom, S.R. Parkin, J.E. Anthony, Tetracene derivatives as potential red emitters for organic LEDs. Org. Lett. 5, 4245–4248 (2003)

    Article  CAS  Google Scholar 

  64. Y.-F. Lim, Y. Shu, S.R. Parkin, J.E. Anthony, G.G. Malliaras, Soluble n-type pentacene derivatives as novel acceptors for organic solar cells. J. Mater. Chem. 19, 3049 (2009)

    Article  CAS  Google Scholar 

  65. C.B. Dover et al., Endothermic singlet fission is hindered by excimer formation. Nat. Chem. 10, 305–310 (2018)

    Article  CAS  Google Scholar 

  66. D.L. Dexter, Two ideas on energy transfer phenomena: ion-pair effects involving the OH stretching mode, and sensitization of photovoltaic cells. J. Lumin. 18–19, 779–784 (1979)

    Article  Google Scholar 

  67. R. MacQueen et al., Crystalline silicon solar cells with tetracene interlayers: the path to silicon-singlet fission heterojunction devices. Mater. Horiz. 5, 1065–1075 (2018)

    Article  CAS  Google Scholar 

  68. M. Einzinger et al., Sensitization of silicon by singlet exciton fission in tetracene. Nature 571, 90–94 (2019)

    Article  CAS  Google Scholar 

  69. P.D. Reusswig, D.N. Congreve, N.J. Thompson, M.A. Baldo, Enhanced external quantum efficiency in an organic photovoltaic cell via singlet fission exciton sensitizer. Appl. Phys. Lett. 101, 113304 (2012)

    Article  CAS  Google Scholar 

  70. T.C. Wu et al., Singlet fission efficiency in tetracene-based organic solar cells. Appl. Phys. Lett. 104, 193901 (2014)

    Article  CAS  Google Scholar 

  71. N.J.L.K. Davis et al., Singlet fission and triplet transfer to PbS quantum dots in TIPS-tetracene carboxylic acid ligands. J. Phys. Chem. Lett. 9, 1454–1460 (2018)

    Article  CAS  Google Scholar 

  72. J.R. Allardice et al., Engineering molecular ligand shells on quantum dots for quantitative harvesting of triplet excitons generated by singlet fission. J. Am. Chem. Soc. 141, 12907–12915 (2019)

    Article  CAS  Google Scholar 

  73. I. Paci et al., Singlet fission for dye-sensitized solar cells: can a suitable sensitizer be found? J. Am. Chem. Soc. 128, 16546–16553 (2006)

    Article  CAS  Google Scholar 

  74. J.C. Johnson, A.J. Nozik, J. Michl, High triplet yield from singlet fission in a thin film of 1,3-diphenylisobenzofuran. J. Am. Chem. Soc. 132, 16302–16303 (2010)

    Article  CAS  Google Scholar 

  75. J.C. Johnson et al., Toward designed singlet fission: solution photophysics of two indirectly coupled covalent dimers of 1,3-diphenylisobenzofuran. J. Phys. Chem. B 117, 4680–4695 (2013)

    Article  CAS  Google Scholar 

  76. J.N. Schrauben, J.L. Ryerson, J. Michl, J.C. Johnson, Mechanism of singlet fission in thin films of 1,3-diphenylisobenzofuran. J. Am. Chem. Soc. 136, 7363–7373 (2014)

    Article  CAS  Google Scholar 

  77. S. Lukman et al., Efficient singlet fission and triplet-pair emission in a family of zethrene diradicaloids. J. Am. Chem. Soc. 139, 18376–18385 (2017)

    Article  CAS  Google Scholar 

  78. A. Akdag, Z.K. Havlas, J. Michl, Search for a small chromophore with efficient singlet fission: biradicaloid heterocycles. J. Am. Chem. Soc. 134, 14624–14631 (2012)

    Article  CAS  Google Scholar 

  79. J. Wen, Z. Havlas, J. Michl, Captodatively stabilized biradicaloids as chromophores for singlet fission. J. Am. Chem. Soc. 137, 165–172 (2015)

    Article  CAS  Google Scholar 

  80. D. López-Carballeira, D. Casanova, F. Ruipérez, Theoretical design of conjugated diradicaloids as singlet fission sensitizers: quinones and methylene derivatives. Phys. Chem. Chem. Phys. 19, 30227–30238 (2017)

    Article  Google Scholar 

  81. T. Minami, M. Nakano, Diradical character view of singlet fission. J. Phys. Chem. Lett. 3, 145–150 (2012)

    Article  CAS  Google Scholar 

  82. S. Ito, T. Minami, M. Nakano, Diradical character based design for singlet fission of condensed-ring systems with 4 n πelectrons. J. Phys. Chem. C 116, 19729–19736 (2012)

    Article  CAS  Google Scholar 

  83. H. Yang, M. Chen, X. Song, Y. Bu, Structural fluctuation governed dynamic diradical character in pentacene. Phys. Chem. Chem. Phys. 17, 13904–13914 (2015)

    Article  CAS  Google Scholar 

  84. J.N. Schrauben et al., Photocurrent enhanced by singlet fission in a dye-sensitized solar cell. ACS Appl. Mater. Interfaces 7, 2286–2293 (2015)

    Article  CAS  Google Scholar 

  85. T. Banerjee et al., Diphenylisobenzofuran bound to nanocrystalline metal oxides: excimer formation, singlet fission, electron injection, and low energy sensitization. J. Phys. Chem. C 122, 28478–28490 (2018)

    Article  CAS  Google Scholar 

  86. H. Liu et al., A covalently linked tetracene trimer: synthesis and singlet exciton fission property. Org. Lett. 19, 580–583 (2017)

    Article  CAS  Google Scholar 

  87. S. Nakamura et al., Quantitative sequential photoenergy conversion process from singlet fission to intermolecular two-electron transfers utilizing tetracene dimer. ACS Energy Lett. 4, 26–31 (2018). https://doi.org/10.1021/acsenergylett.8b01964

    Article  CAS  Google Scholar 

  88. Y. Matsui et al., Exergonic intramolecular singlet fission of an adamantane-linked tetracene dyad via twin quintet multiexcitons. J. Phys. Chem. C 123, 18813–18823 (2019)

    Article  CAS  Google Scholar 

  89. J. Zirzlmeier et al., Singlet fission in pentacene dimers. Proc. Natl. Acad. Sci. 112, 5325–5330 (2015)

    Article  CAS  Google Scholar 

  90. S.N. Sanders et al., Quantitative intramolecular singlet fission in bipentacenes. J. Am. Chem. Soc. 137, 8965–8972 (2015)

    Article  CAS  Google Scholar 

  91. S. Lukman et al., Tuning the role of charge-transfer states in intramolecular singlet exciton fission through side-group engineering. Nat. Commun. 7, 13622 (2016)

    Article  CAS  Google Scholar 

  92. S.N. Sanders et al., Exciton correlations in intramolecular singlet fission. J. Am. Chem. Soc. 138, 7289–7297 (2016)

    Article  CAS  Google Scholar 

  93. S.N. Sanders et al., Intramolecular singlet fission in oligoacene heterodimers. Angew. Chem. Int. Ed. Engl. 55, 3434–3438 (2016). https://doi.org/10.1002/ange.201510632

    Article  Google Scholar 

  94. E.G. Fuemmeler et al., A direct mechanism of ultrafast intramolecular singlet fission in pentacene dimers. ACS Cent. Sci. 2, 316–324 (2016)

    Article  CAS  Google Scholar 

  95. E. Kumarasamy et al., Tuning singlet fission in π-bridge-π chromophores. J. Am. Chem. Soc. 139, 12488–12494 (2017)

    Article  CAS  Google Scholar 

  96. C.K. Yong et al., The entangled triplet pair state in acene and heteroacene materials. Nat. Commun. 8, 15953 (2017)

    Article  CAS  Google Scholar 

  97. J.C. Dean et al., Photophysical characterization and time-resolved spectroscopy of a anthradithiophene dimer: exploring the role of conformation in singlet fission. Phys. Chem. Chem. Phys. 19, 23162–23175 (2017)

    Article  CAS  Google Scholar 

  98. A.B. Pun et al., Triplet harvesting from intramolecular singlet fission in polytetracene. Adv. Mater. 29, 1701416 (2017)

    Article  CAS  Google Scholar 

  99. R. Montero et al., Singlet fission mediated photophysics of BODIPY dimers. J. Phys. Chem. Lett. 9, 641–646 (2018)

    Article  CAS  Google Scholar 

  100. A.B. Pun et al., Ultra-fast intramolecular singlet fission to persistent multiexcitons by molecular design. Nat. Chem. 11, 821–828 (2019)

    Article  CAS  Google Scholar 

  101. C. Hetzer, D.M. Guldi, R.R. Tykwinski, Pentacene dimers as a critical tool for the investigation of intramolecular singlet fission. Chem. A Eur. J. 24, 8245–8257 (2018)

    Article  CAS  Google Scholar 

  102. E. Busby et al., A design strategy for intramolecular singlet fission mediated by charge-transfer states in donor-acceptor organic materials. Nat. Mater. 14, 426–433 (2015)

    Article  CAS  Google Scholar 

  103. S.N. Sanders et al., Singlet fission in polypentacene. Chem 1 (2016)

    Google Scholar 

  104. J. Hu et al., New insights into the design of conjugated polymers for intramolecular singlet fission. Nat. Commun. 9 (2018)

    Google Scholar 

  105. L.M. Yablon et al., Persistent multiexcitons from polymers with pendent pentacenes. J. Am. Chem. Soc. 141, 9564–9569 (2019)

    Article  CAS  Google Scholar 

  106. E.A. Buchanan, J. Michl, Packing guidelines for optimizing singlet fission matrix elements in noncovalent dimers. J. Am. Chem. Soc. 139, 15572–15575 (2017)

    Article  CAS  Google Scholar 

  107. A. Zaykov et al., Singlet fission rate: optimized packing of a molecular pair. Ethylene as a model. J. Am. Chem. Soc. 141, 17729–17743 (2019)

    Article  CAS  Google Scholar 

  108. D. Padula, Ö.H. Omar, T. Nematiaram, A. Troisi, Singlet fission molecules among known compounds: finding a few needles in a haystack. Energy Environ. Sci. 12, 2412–2416 (2019)

    Article  Google Scholar 

  109. O. El Bakouri, J.R. Smith, H. Ottosson, Strategies for design of potential singlet fission chromophores utilizing a combination of ground state and excited state aromaticity rules. J. Am. Chem. Soc. 142, 5602–5617 (2020)

    Article  CAS  Google Scholar 

  110. K.J. Fallon et al., Exploiting excited-state aromaticity to design highly stable singlet fission materials. J. Am. Chem. Soc. 141, 13867–13876 (2019)

    Article  CAS  Google Scholar 

  111. M. Rosenberg, C. Dahlstrand, K. Kilså, H. Ottosson, Excited state aromaticity and antiaromaticity: opportunities for photophysical and photochemical rationalizations. Chem. Rev. 114, 5379–5425 (2014)

    Article  CAS  Google Scholar 

  112. Y.M. Sung et al., Reversal of Hückel (anti)aromaticity in the lowest triplet states of hexaphyrins and spectroscopic evidence for Baird’s rule. Nat. Chem. 7, 418–422 (2015)

    Article  CAS  Google Scholar 

  113. J. Oh et al., Unraveling excited-singlet-state aromaticity via vibrational analysis. Chem 3, 870–880 (2017)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor Gray .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gray, V., Weiss, L., Rao, A. (2022). Singlet Fission: Mechanisms and Molecular Design. In: Lissau, J.S., Madsen, M. (eds) Emerging Strategies to Reduce Transmission and Thermalization Losses in Solar Cells. Springer, Cham. https://doi.org/10.1007/978-3-030-70358-5_14

Download citation

Publish with us

Policies and ethics