Skip to main content

Rare-Earth Ion-Based Photon Up-Conversion for Transmission-Loss Reduction in Solar Cells

  • Chapter
  • First Online:
Emerging Strategies to Reduce Transmission and Thermalization Losses in Solar Cells

Abstract

Photon up-conversion (UC) describes an anti-Stokes emission process, in which a luminophor emits one higher energy photon after being excited by multiple low-energy photons, among which rare-earth (RE) ion-doped materials present promising UC properties due to unique electron configuration. RE UC materials have been widely studied in solar cells with the purpose to reduce transmission losses, i.e., achieve wide/full solar spectral harvesting and high-power conversion efficiency, by converting unutilized sub-bandgap photons into sensitive resonant photons. This chapter exclusively focuses on RE-doped UC materials and their applications in solar cells. The RE-based UC photophysics, UC enhancement, and applications in solar cells will be reviewed and briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. L.C. Hirst, N.J. Ekins-Daukes, Fundamental losses in solar cells. Prog. Photovolt. Res. Appl. 19, 286–293 (2011)

    Article  Google Scholar 

  2. W. Shockley, H.J. Queisser, Detailed balance limit of efficiency of p-n junction solar cells. J. Appl. Phys. 32, 510–519 (1961)

    Article  CAS  Google Scholar 

  3. H.-Q. Wang, M. Batentschuk, A. Osvet, L. Pinna, C.J. Brabec, Rare-earth ion doped up-conversion materials for photovoltaic applications. Adv. Mater. 23, 2675–2680 (2011b)

    Article  CAS  Google Scholar 

  4. J. de Wild, A. Meijerink, J.K. Rath, W.G.J.H.M. van Sark, R.E.I. Schropp, Upconverter solar cells: materials and applications. Energy Environ. Sci. 4, 4835–4848 (2011)

    Article  CAS  Google Scholar 

  5. D. Wöhrle, D. Meissner, Organic solar cells. Adv. Mater. 3, 129–138 (1991)

    Article  Google Scholar 

  6. Y. Cai, L. Huo, Y. Sun, Recent advances in wide-bandgap photovoltaic polymers. Adv. Mater. 29, 1605437 (2017)

    Article  CAS  Google Scholar 

  7. G. Dennler, M.C. Scharber, C.J. Brabec, Polymer-fullerene bulk-heterojunction solar cells. Adv. Mater. 21, 1323–1338 (2009)

    Article  CAS  Google Scholar 

  8. H. Hoppe, N.S. Sariciftci, Organic solar cells: an overview. J. Mater. Res. 19, 1924–1945 (2011)

    Article  CAS  Google Scholar 

  9. T. Ameri, G. Dennler, C. Lungenschmied, C.J. Brabec, Organic tandem solar cells: a review. Energy Environ. Sci. 2, 347–363 (2009)

    Article  CAS  Google Scholar 

  10. T. Ameri, N. Li, C.J. Brabec, Highly efficient organic tandem solar cells: a follow up review. Energy Environ. Sci. 6, 2390–2413 (2013)

    Article  CAS  Google Scholar 

  11. R. Kroon, M. Lenes, J.C. Hummelen, P.W.M. Blom, B. de Boer, Small bandgap polymers for organic solar cells (polymer material development in the last 5 years). Polym. Rev. 48, 531–582 (2008)

    Article  CAS  Google Scholar 

  12. T. Dilbeck, K. Hanson, Molecular photon upconversion solar cells using multilayer assemblies: progress and prospects. J. Phys. Chem. Lett. 9, 5810–5821 (2018)

    Article  CAS  Google Scholar 

  13. A.J. Nozik, J. Miller, Introduction to solar photon conversion. Chem. Rev. 110, 6443–6445 (2010)

    Article  CAS  Google Scholar 

  14. X. Xie, X. Liu, Upconversion goes broadband. Nat. Mater. 11, 842–843 (2012)

    Article  CAS  Google Scholar 

  15. C.J. Brabec, S. Gowrisanker, J.J.M. Halls, D. Laird, S. Jia, S.P. Williams, Polymer-fullerene bulk-heterojunction solar cells. Adv. Mater. 22, 3839–3856 (2010)

    Article  CAS  Google Scholar 

  16. N. Bloembergen, Solid state infrared quantum counters. Phys. Rev. Lett. 2, 84–85 (1959)

    Article  CAS  Google Scholar 

  17. X. Liu, C.-H. Yan, J.A. Capobianco, Photon upconversion nanomaterials. Chem. Soc. Rev. 44, 1299–1301 (2015)

    Article  CAS  Google Scholar 

  18. F. Auzel, Upconversion and anti-stokes processes with f and d ions in solids. Chem. Rev. 104, 139–173 (2004)

    Article  CAS  Google Scholar 

  19. V. Gray, K. Moth-Poulsen, B. Albinsson, M. Abrahamsson, Towards efficient solid-state triplet–triplet annihilation based photon upconversion: supramolecular, macromolecular and self-assembled systems. Coord. Chem. Rev. 362, 54–71 (2018)

    Article  CAS  Google Scholar 

  20. A. Nonat, T. Fix, 6—photon converters for photovoltaics, in Advanced Micro- and Nanomaterials for Photovoltaics, ed. by D. Ginley, T. Fix, (Elsevier, 2019), pp. 121–151

    Chapter  Google Scholar 

  21. J.A. Briggs, A.C. Atre, J.A. Dionne, Narrow-bandwidth solar upconversion: case studies of existing systems and generalized fundamental limits. J. Appl. Phys. 113, 124509 (2013)

    Article  CAS  Google Scholar 

  22. T. Trupke, A. Shalav, B.S. Richards, P. Würfel, M.A. Green, Efficiency enhancement of solar cells by luminescent up-conversion of sunlight. Sol. Energy Mater. Sol. Cells 90, 3327–3338 (2006)

    Article  CAS  Google Scholar 

  23. G. Chen, J. Shen, T.Y. Ohulchanskyy, N.J. Patel, A. Kutikov, Z. Li, J. Song, R.K. Pandey, H. Ågren, P.N. Prasad, G. Han, (α-NaYbF4:Tm3+)/CaF2 core/shell nanoparticles with efficient near-infrared to near-infrared upconversion for high-contrast deep tissue bioimaging. ACS Nano 6, 8280–8287 (2012)

    Article  CAS  Google Scholar 

  24. P. Gibart, F. Auzel, J.-C. Guillaume, K. Zahraman, Below band-gap IR response of substrate-free GaAs solar cells using two-photon up-conversion. Jpn. J. Appl. Phys. 35, 4401–4402 (1996)

    Article  CAS  Google Scholar 

  25. G. Liu, Electronic energy level structure, in Spectroscopic Properties of Rare Earths in Optical Materials, ed. by R. Hull, J. Parisi, R. M. Osgood, H. Warlimont, G. Liu, B. Jacquier, (Springer, Berlin, Heidelberg, 2005), pp. 1–94

    Google Scholar 

  26. S.V. Eliseeva, J.C.G. Bunzli, Lanthanide luminescence for functional materials and bio-sciences. Chem. Soc. Rev. 39, 189–227 (2010)

    Article  CAS  Google Scholar 

  27. F. Wang, R. Deng, J. Wang, Q. Wang, Y. Han, H. Zhu, X. Chen, X. Liu, Tuning upconversion through energy migration in core-shell nanoparticles. Nat. Mater. 10, 968–973 (2011a)

    Article  CAS  Google Scholar 

  28. O. Ehlert, R. Thomann, M. Darbandi, T. Nann, A four-color colloidal multiplexing nanoparticle system. ACS Nano 2, 120–124 (2008)

    Article  CAS  Google Scholar 

  29. J.C. Boyer, F.C.J.M. van Veggel, Absolute quantum yield measurements of colloidal NaYF4: Er3+, Yb3+ upconverting nanoparticles. Nanoscale 2, 1417–1419 (2010)

    Article  CAS  Google Scholar 

  30. G.A. Crosby, J.N. Demas, Measurement of photoluminescence quantum yields. Review. J. Phys. Chem. 75, 991–1024 (1971)

    Article  CAS  Google Scholar 

  31. Y. Zorenko, V. Gorbenko, T. Zorenko, K. Paprocki, A. Osvet, M. Batentschuk, C. Brabec, A. Fedorov, Enhancement of up-conversion luminescence in Er,Ce doped Y3−xYbxAG single crystalline films. J. Lumin. 169, 816–821 (2016)

    Article  CAS  Google Scholar 

  32. F. Wang, X. Liu, Upconversion multicolor fine-tuning: visible to near-infrared emission from lanthanide-doped NaYF4 nanoparticles. J. Am. Chem. Soc. 130, 5642–5643 (2008)

    Article  CAS  Google Scholar 

  33. D. Li, H. Ågren, G. Chen, Near infrared harvesting dye-sensitized solar cells enabled by rare-earth upconversion materials. Dalton Trans. 47, 8526–8537 (2018)

    Article  CAS  Google Scholar 

  34. H.-Q. Wang, M. Mačković, A. Osvet, I. Litzov, E. Epelbaum, A. Stiegelschmitt, M. Batentschuk, E. Spiecker, C.J. Brabec, A new crystal phase molybdate Yb2Mo4O15: the synthesis and upconversion properties. Part. Part. Syst. Charact. 32, 340–346 (2015)

    Article  CAS  Google Scholar 

  35. K.W. Krämer, D. Biner, G. Frei, H.U. Güdel, M.P. Hehlen, S.R. Lüthi, Hexagonal sodium yttrium fluoride based green and blue emitting upconversion phosphors. Chem. Mater. 16, 1244–1251 (2004)

    Article  CAS  Google Scholar 

  36. I. Etchart, Metal Oxides for Efficient Infrared to Visible Upconversion. University of Cambrige Ph.D. Thesis (2010)

    Google Scholar 

  37. A. Nadort, J. Zhao, E.M. Goldys, Lanthanide upconversion luminescence at the nanoscale: fundamentals and optical properties. Nanoscale 8, 13099–13130 (2016)

    Article  CAS  Google Scholar 

  38. J.H.V. Vleck, The puzzle of rare-earth spectra in solids. J. Phys. Chem. 41, 67–80 (1937)

    Article  Google Scholar 

  39. H.-Q. Wang, T. Nann, Book Chapter: Upconverting nanoparticles, in Springer Book: Lanthanide Luminescence, vol. 7, (2010), pp. 115–132

    Chapter  Google Scholar 

  40. J.C. Goldschmidt, S. Fischer, Upconversion for photovoltaics—a review of materials, devices and concepts for performance enhancement. Adv. Opt. Mater. 3, 510–535 (2015)

    Article  CAS  Google Scholar 

  41. S. Heer, K. Kömpe, H.-U. Güdel, M. Haase, Highly efficient multicolour upconversion emission in transparent colloids of lanthanide-doped NaYF4 nanocrystals. Adv. Mater. 16, 2102–2105 (2004)

    Article  CAS  Google Scholar 

  42. H. Dong, L.-D. Sun, C.-H. Yan, Basic understanding of the lanthanide related upconversion emissions. Nanoscale 5, 5703–5714 (2013)

    Article  CAS  Google Scholar 

  43. H.-Q. Wang, T. Nann, Monodisperse upconverting nanocrystals by microwave-assisted synthesis. ACS Nano 3, 3804–3808 (2009)

    Article  CAS  Google Scholar 

  44. Z. Li, Y. Zhang, S. Jiang, Multicolor core/shell-structured upconversion fluorescent nanoparticles. Adv. Mater. 20, 4765–4769 (2008)

    Article  CAS  Google Scholar 

  45. Y. Wang, L. Tu, J. Zhao, Y. Sun, X. Kong, H. Zhang, Upconversion luminescence of β-NaYF4: Yb3+, Er3+@β-NaYF4 core/shell nanoparticles: excitation power density and surface dependence. J. Phys. Chem. C 113, 7164–7169 (2009)

    Article  CAS  Google Scholar 

  46. H.-S. Qian, Y. Zhang, Synthesis of hexagonal-phase core-shell NaYF4 nanocrystals with tunable upconversion fluorescence. Langmuir 24, 12123–12125 (2008)

    Article  CAS  Google Scholar 

  47. G.-S. Yi, G.-M. Chow, Water-soluble NaYF4:Yb,Er(Tm)/NaYF4/polymer core/shell/shell nanoparticles with significant enhancement of upconversion fluorescence. Chem. Mater. 19, 341–343 (2007)

    Article  CAS  Google Scholar 

  48. F. Zhang, R. Che, X. Li, C. Yao, J. Yang, D. Shen, P. Hu, W. Li, D. Zhao, Direct imaging the upconversion nanocrystal core/shell structure at the subnanometer level: shell thickness dependence in upconverting optical properties. Nano Lett. 12, 2852–2858 (2012a)

    Article  CAS  Google Scholar 

  49. X. Li, D. Shen, J. Yang, C. Yao, R. Che, F. Zhang, D. Zhao, Successive layer-by-layer strategy for multi-shell epitaxial growth: shell thickness and doping position dependence in upconverting optical properties. Chem. Mater. 25, 106–112 (2013)

    Article  CAS  Google Scholar 

  50. Z. Li, W. Park, G. Zorzetto, J.S. Lemaire, C.J. Summers, Synthesis protocols for δ-doped NaYF4:Yb,Er. Chem. Mater. 26, 1770–1778 (2014)

    Article  CAS  Google Scholar 

  51. H. Zhang, Y. Li, I.A. Ivanov, Y. Qu, Y. Huang, X. Duan, Plasmonic modulation of the upconversion fluorescence in NaYF4:Yb/tm hexaplate nanocrystals using gold nanoparticles or nanoshells. Angew. Chem. Int. Ed. 49, 2865–2868 (2010)

    Article  CAS  Google Scholar 

  52. S.P. Madsen, J. Christiansen, R.E. Christiansen, J. Vester-Petersen, S.H. Møller, H. Lakhotiya, A. Nazir, E. Eriksen, S. Roesgaard, O. Sigmund, J.S. Lissau, E. Destouesse, M. Madsen, B. Julsgaard, P. Balling, Improving the efficiency of upconversion by light concentration using nanoparticle design. J. Phys. D. Appl. Phys. 53, 073001 (2019)

    Article  CAS  Google Scholar 

  53. W. Deng, L. Sudheendra, J. Zhao, J. Fu, D. Jin, I.M. Kennedy, E.M. Goldys, Upconversion in NaYF4:Yb, Er nanoparticles amplified by metal nanostructures. Nanotechnology 22, 325604 (2011)

    Article  CAS  Google Scholar 

  54. J.H. Lin, H.Y. Liou, C.-D. Wang, C.-Y. Tseng, C.-T. Lee, C.-C. Ting, H.-C. Kan, C.C. Hsu, Giant enhancement of upconversion fluorescence of NaYF4:Yb3+,Tm3+ nanocrystals with resonant waveguide grating substrate. ACS Photonics 2, 530–536 (2015)

    Article  CAS  Google Scholar 

  55. W. Zou, C. Visser, J.A. Maduro, M.S. Pshenichnikov, J.C. Hummelen, Broadband dye-sensitized upconversion of near-infrared light. Nat. Photonics 6, 560–564 (2012)

    Article  CAS  Google Scholar 

  56. G. Chen, J. Damasco, H. Qiu, W. Shao, T.Y. Ohulchanskyy, R.R. Valiev, X. Wu, G. Han, Y. Wang, C. Yang, H. Ågren, P.N. Prasad, Energy-cascaded upconversion in an organic dye-sensitized core/shell fluoride nanocrystal. Nano Lett. 15, 7400–7407 (2015a)

    Article  CAS  Google Scholar 

  57. J.F. Suyver, A. Aebischer, D. Biner, P. Gerner, J. Grimm, S. Heer, K.W. Krämer, C. Reinhard, H.U. Güdel, Novel materials doped with trivalent lanthanides and transition metal ions showing near-infrared to visible photon upconversion. Opt. Mater. 27, 1111–1130 (2005)

    Article  CAS  Google Scholar 

  58. Y. Zhang, J.D. Lin, V. Vijayaragavan, K.K. Bhakoo, T.T.Y. Tan, Tuning sub-10 nm single-phase NaMnF3 nanocrystals as ultrasensitive hosts for pure intense fluorescence and excellent T1 magnetic resonance imaging. Chem. Commun. 48, 10322–10324 (2012b)

    Article  CAS  Google Scholar 

  59. D. Gao, X. Zhang, W. Gao, Formation of bundle-shaped β-NaYF4 upconversion microtubes via Ostwald ripening. ACS Appl. Mater. Interfaces 5, 9732–9739 (2013)

    Article  CAS  Google Scholar 

  60. Z. Wu, M. Lin, S. Liang, Y. Liu, H. Zhang, B. Yang, Hot-injection synthesis of manganese-ion-doped NaYF4:Yb,Er nanocrystals with red up-converting emission and tunable diameter. Part. Part. Syst. Charact. 30, 311–315 (2013)

    Article  CAS  Google Scholar 

  61. L. Aboshyan-Sorgho, C. Besnard, P. Pattison, K.R. Kittilstved, A. Aebischer, J.-C.G. Bünzli, A. Hauser, C. Piguet, Near-infrared→visible light upconversion in a molecular trinuclear d-f-d complex. Angew. Chem. Int. Ed. 50, 4108–4112 (2011)

    Article  CAS  Google Scholar 

  62. L. Aboshyan-Sorgho, M. Cantuel, S. Petoud, A. Hauser, C. Piguet, Optical sensitization and upconversion in discrete polynuclear chromium-lanthanide complexes. Coord. Chem. Rev. 256, 1644–1663 (2012)

    Article  CAS  Google Scholar 

  63. S. Ye, E.H. Song, E. Ma, S.J. Zhang, J. Wang, X.Y. Chen, Q.Y. Zhang, J.R. Qiu, Broadband Cr3+-sensitized upconversion luminescence in La3Ga5GeO14:Cr3+,Yb3+,Er3+. Opt. Mater. Express 4, 638–648 (2014)

    Google Scholar 

  64. Y. Takeda, S. Mizuno, H.N. Luitel, T. Tani, A broadband-sensitive upconverter La(Ga0.5Sc0.5)O3:Er,Ni,Nb for crystalline silicon solar cells. Appl. Phys. Lett. 108, 043901 (2016)

    Article  CAS  Google Scholar 

  65. H. Liu, C.T. Xu, G. Dumlupinar, O.B. Jensen, P.E. Andersen, S. Andersson-Engels, Deep tissue optical imaging of upconverting nanoparticles enabled by exploiting higher intrinsic quantum yield through use of millisecond single pulse excitation with high peak power. Nanoscale 5, 10034–10040 (2013)

    Article  CAS  Google Scholar 

  66. Z. Chen, W. Cui, S. Kang, H. Zhang, G. Dong, C. Jiang, S. Zhou, J. Qiu, Fast-slow red upconversion fluorescence modulation from Ho3+-doped glass ceramics upon two-wavelength excitation. Adv. Opt. Mater. 5, 1600554 (2017)

    Article  CAS  Google Scholar 

  67. Z. Chen, G. Wu, H. Jia, K. Sharafudeen, W. Dai, X. Zhang, S. Zeng, J. Liu, R. Wei, S. Lv, G. Dong, J. Qiu, Improved up-conversion luminescence from Er3+:LaF3 nanocrystals embedded in oxyfluoride glass ceramics via simultaneous triwavelength excitation. J. Phys. Chem. C 119, 24056–24061 (2015c)

    Article  CAS  Google Scholar 

  68. V. Saxena, Phosphors for Solar-Cells-tb-Doped Lanthanum Fluoride and th-Doped Calcium Tungstate (Council Scientific Industrial Research Publ & Info Directorate, New Delhi, 1983), pp. 306–307

    Google Scholar 

  69. A. Shalav, B.S. Richards, T. Trupke, K.W. Krämer, H.U. Güdel, Application of NaYF4:Er3+ up-converting phosphors for enhanced near-infrared silicon solar cell response. Appl. Phys. Lett. 86, 013505 (2005)

    Article  CAS  Google Scholar 

  70. S. Fischer, E. Favilla, M. Tonelli, J.C. Goldschmidt, Record efficient upconverter solar cell devices with optimized bifacial silicon solar cells and monocrystalline BaY2F8:30% Er3+ upconverter. Sol. Energy Mater. Sol. Cells 136, 127–134 (2015)

    Article  CAS  Google Scholar 

  71. F. Lahoz, Ho3+-doped nanophase glass ceramics for efficiency enhancement in silicon solar cells. Opt. Lett. 33, 2982–2984 (2008)

    Article  CAS  Google Scholar 

  72. F. Lahoz, C. Pérez-Rodríguez, S.E. Hernández, I.R. Martín, V. Lavín, U.R. Rodríguez-Mendoza, Upconversion mechanisms in rare-earth doped glasses to improve the efficiency of silicon solar cells. Sol. Energy Mater. Sol. Cells 95, 1671–1677 (2011)

    Article  CAS  Google Scholar 

  73. J. de Wild, J.K. Rath, A. Meijerink, W.G.J.H.M. van Sark, R.E.I. Schropp, Enhanced near-infrared response of a-Si:H solar cells with β-NaYF4:Yb3+ (18%), Er3+ (2%) upconversion phosphors. Sol. Energy Mater. Sol. Cells 94, 2395–2398 (2010)

    Article  CAS  Google Scholar 

  74. M. Takei, Conductive paste for solar cell, Pat. Nr. JP20100099623 20100423 (A) (2011)

    Google Scholar 

  75. C. Miao, T. Liu, Y. Zhu, Q. Dai, W. Xu, L. Xu, S. Xu, Y. Zhao, H. Song, Super-intense white upconversion emission of Yb2O3 polycrystals and its application on luminescence converter of dye-sensitized solar cells. Opt. Lett. 38, 3340–3343 (2013)

    Article  CAS  Google Scholar 

  76. G.B. Shan, G.P. Demopoulos, Near-infrared sunlight harvesting in dye-sensitized solar cells via the insertion of an upconverter-TiO2 nanocomposite layer. Adv. Mater. 22, 4373–4377 (2010)

    Article  CAS  Google Scholar 

  77. Z. Zhou, J. Wang, F. Nan, C. Bu, Z. Yu, W. Liu, S. Guo, H. Hu, X.-Z. Zhao, Upconversion induced enhancement of dye sensitized solar cells based on core-shell structured β-NaYF4:Er3+, Yb3+@SiO2 nanoparticles. Nanoscale 6, 2052–2055 (2014)

    Article  CAS  Google Scholar 

  78. L. Liang, Y. Liu, C. Bu, K. Guo, W. Sun, N. Huang, T. Peng, B. Sebo, M. Pan, W. Liu, S. Guo, X.-Z. Zhao, Highly uniform, bifunctional core/double-shell-structured β-NaYF4:Er3+, Yb3+ @ SiO2@TiO2 hexagonal sub-microprisms for high-performance dye sensitized solar cells. Adv. Mater. 25, 2174–2180 (2013)

    Article  CAS  Google Scholar 

  79. C. Yuan, G. Chen, P.N. Prasad, T.Y. Ohulchanskyy, Z. Ning, H. Tian, L. Sun, H. Ågren, Use of colloidal upconversion nanocrystals for energy relay solar cell light harvesting in the near-infrared region. J. Mater. Chem. 22, 16709–16713 (2012)

    Article  CAS  Google Scholar 

  80. G. Dennler, M.C. Scharber, T. Ameri, P. Denk, K. Forberich, C. Waldauf, C.J. Brabec, Design rules for donors in bulk-heterojunction tandem solar cells towards 15% energy-conversion efficiency. Adv. Mater. 20, 579–583 (2008)

    Article  CAS  Google Scholar 

  81. W. Chen, Y. Hou, A. Osvet, F. Guo, P. Kubis, M. Batentschuk, B. Winter, E. Spiecker, K. Forberich, C.J. Brabec, Sub-bandgap photon harvesting for organic solar cells via integrating up-conversion nanophosphors. Org. Electron. 19, 113–119 (2015b)

    Article  CAS  Google Scholar 

  82. H.-Q. Wang, T. Stubhan, A. Osvet, I. Litzov, C.J. Brabec, Up-conversion semiconducting MoO3:Yb/Er nanocomposites as buffer layer in organic solar cells. Sol. Energy Mater. Sol. Cells 105, 196–201 (2012)

    Article  CAS  Google Scholar 

  83. W. Guo, K. Zheng, W. Xie, L. Sun, L. Shen, C. Liu, Y. He, Z. Zhang, Efficiency enhancement of inverted polymer solar cells by doping NaYF4:Yb3+, Er3+ nanocomposites in PCDTBT:PCBM active layer. Sol. Energy Mater. Sol. Cells 124, 126–132 (2014)

    Article  CAS  Google Scholar 

  84. X. Chen, W. Xu, H. Song, C. Chen, H. Xia, Y. Zhu, D. Zhou, S. Cui, Q. Dai, J. Zhang, Highly efficient LiYF4:Yb3+, Er3+ upconversion single crystal under solar cell spectrum excitation and photovoltaic application. ACS Appl. Mater. Interfaces 8, 9071–9079 (2016)

    Article  CAS  Google Scholar 

  85. M. He, X. Pang, X. Liu, B. Jiang, Y. He, H. Snaith, Z. Lin, Monodisperse dual-functional upconversion nanoparticles enabled near-infrared organolead halide perovskite solar cells. Angew. Chem. Int. Ed. 55, 4280–4284 (2016)

    Article  CAS  Google Scholar 

  86. M. Que, W. Que, X. Yin, P. Chen, Y. Yang, J. Hu, B. Yu, Y. Du, Enhanced conversion efficiency in perovskite solar cells by effectively utilizing near infrared light. Nanoscale 8, 14432–14437 (2016)

    Article  CAS  Google Scholar 

  87. J. Hu, Y. Qiao, Y. Yang, L. Zhao, W. Liu, S. Li, P. Liu, M. Chen, Enhanced performance of hole-conductor-free perovskite solar cells by utilization of core/shell-structured β-NaYF4:Yb3+,Er3+@SiO2 nanoparticles in ambient air. IEEE J. Photovoltaics 8, 132–136 (2018)

    Article  Google Scholar 

  88. X. Lai, X. Li, X. Lv, Y.-Z. Zheng, F. Meng, X. Tao, Broadband dye-sensitized upconverting nanocrystals enabled near-infrared planar perovskite solar cells. J. Power Sources 372, 125–133 (2017)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hai-Qiao Wang or Andres Osvet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wang, HQ., Osvet, A., Batentschuk, M., Brabec, C.J. (2022). Rare-Earth Ion-Based Photon Up-Conversion for Transmission-Loss Reduction in Solar Cells. In: Lissau, J.S., Madsen, M. (eds) Emerging Strategies to Reduce Transmission and Thermalization Losses in Solar Cells. Springer, Cham. https://doi.org/10.1007/978-3-030-70358-5_12

Download citation

Publish with us

Policies and ethics