Skip to main content
  • 865 Accesses

Abstract

Optical and electronic coupling architectures are two distinct strategies for harnessing photon upconversion via triplet-triplet annihilation (TTA-UC) in a solar cell. The former combines a standard solar cell with an UC film (Chap. 10), while the latter integrates TTA-UC directly into the solar cell. In this chapter we will review the various strategies for integrating TTA-UC into dye-sensitized and layered heterojunction solar cells. These strategies include heterogeneous sensitization, multilayers, metal-organic frameworks, co-deposition, and more. We describe these architectures, note advantages and disadvantages of each, and summarize progress in the field to date. We also discuss the efficiency-limiting factors of current devices and the prospects for integrated TTA-UC solar cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S. Namba, Y. Hishiki, Color sensitization of zinc oxide with cyanine Dyes1. J. Phys. Chem. 69(3), 774–779 (1965)

    Article  CAS  Google Scholar 

  2. B. O’Regan, M. Grätzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353(6346), 737–740 (1991)

    Article  Google Scholar 

  3. A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo, H. Pettersson, Dye-sensitized solar cells. Chem. Rev. 110(11), 6595–6663 (2010)

    Article  CAS  Google Scholar 

  4. A. Hagfeldt, Brief overview of dye-sensitized solar cells. Ambio 41(Suppl 2), 151–155 (2012)

    Article  Google Scholar 

  5. J. Gong, K. Sumathy, Q. Qiao, Z. Zhou, Review on dye-sensitized solar cells (DSSCs): advanced techniques and research trends. Renew. Sust. Energ. Rev. 68, 234–246 (2017)

    Article  CAS  Google Scholar 

  6. J.C. Wang, S.P. Hill, T. Dilbeck, O.O. Ogunsolu, T. Banerjee, K. Hanson, Multimolecular assemblies on high surface area metal oxides and their role in interfacial energy and electron transfer. Chem. Soc. Rev. 47(1), 104–148 (2018)

    Article  CAS  Google Scholar 

  7. M.K. Nazeeruddin, R. Humphry-Baker, P. Liska, M. Grätzel, Investigation of sensitizer adsorption and the influence of protons on current and voltage of a dye-sensitized nanocrystalline TiO2 solar cell. J. Phys. Chem. B 107(34), 8981–8987 (2003)

    Article  CAS  Google Scholar 

  8. J. Albero, P. Atienzar, A. Corma, H. Garcia, Efficiency records in mesoscopic dye-sensitized solar cells. Chem. Rec. 15(4), 803–828 (2015)

    Article  CAS  Google Scholar 

  9. V.S. Manthou, E.K. Pefkianakis, P. Falaras, G.C. Vougioukalakis, Co-adsorbents: a key component in efficient and robust dye-sensitized solar cells. ChemSusChem 8(4), 588–599 (2015)

    Article  CAS  Google Scholar 

  10. Z. Zhang, S.M. Zakeeruddin, B.C. O’Regan, R. Humphry-Baker, M. Grätzel, Influence of 4-guanidinobutyric acid as coadsorbent in reducing recombination in dye-sensitized solar cells. J. Phys. Chem. B 109(46), 21818–21824 (2005)

    Article  CAS  Google Scholar 

  11. J.S. Lissau, J.M. Gardner, A. Morandeira, Photon upconversion on dye-sensitized nanostructured ZrO2 films. J. Phys. Chem. C 115(46), 23226–23232 (2011)

    Article  CAS  Google Scholar 

  12. A. Haefele, J. Blumhoff, R.S. Khnayzer, F.N. Castellano, Getting to the (square) root of the problem: how to make noncoherent pumped upconversion linear. J. Phys. Chem. Lett. 3(3), 299–303 (2012)

    Article  CAS  Google Scholar 

  13. A. Monguzzi, J. Mezyk, F. Scotognella, R. Tubino, F. Meinardi, Upconversion-induced fluorescence in multicomponent systems: steady-state excitation power threshold. Phys. Rev. B 78(19), 195112 (2008)

    Article  CAS  Google Scholar 

  14. Y.Y. Cheng, T. Khoury, R.G.C.R. Clady, M.J.Y. Tayebjee, N.J. Ekins-Daukes, M.J. Crossley, T.W. Schmidt, On the efficiency limit of triplet-triplet annihilation for photochemical upconversion. Phys. Chem. Chem. Phys. 12(1), 66–71 (2010)

    Article  CAS  Google Scholar 

  15. J.E. Auckett, Y.Y. Chen, T. Khoury, R.G. Clady, N. Ekins-Daukes, M.J. Crossley, T.W. Schmidt, Efficient up-conversion by triplet-triplet annihilation. J. Phys.: Conf. Ser. 185, 012002 (2009). IOP Publishing

    Google Scholar 

  16. J.S. Lissau, D. Nauroozi, M.-P. Santoni, S. Ott, J.M. Gardner, A. Morandeira, Anchoring energy acceptors to nanostructured ZrO2 enhances photon upconversion by sensitized triplet–triplet annihilation under simulated solar flux. J. Phys. Chem. C 117(28), 14493–14501 (2013)

    Article  CAS  Google Scholar 

  17. J.S. Lissau, D. Nauroozi, M.-P. Santoni, T. Edvinsson, S. Ott, J.M. Gardner, A. Morandeira, What limits photon upconversion on mesoporous thin films sensitized by solution-phase absorbers? J. Phys. Chem. C 119(9), 4550–4564 (2015)

    Article  CAS  Google Scholar 

  18. J.S. Lissau, D. Nauroozi, M.-P. Santoni, S. Ott, J.M. Gardner, A. Morandeira, Photon upconversion from chemically bound triplet sensitizers and emitters on mesoporous ZrO2: implications for solar energy conversion. J. Phys. Chem. C 119(46), 25792–25806 (2015)

    Article  CAS  Google Scholar 

  19. J.M. Giaimuccio, J.G. Rowley, G.J. Meyer, D. Wang, E. Galoppini, Heavy atom effects on anthracene-rigid-rod excited states anchored to metal oxide nanoparticles. Chem. Phys. 339(1), 146–153 (2007)

    Article  CAS  Google Scholar 

  20. C. Simpson, T.M. Clarke, R.W. MacQueen, Y.Y. Cheng, A.J. Trevitt, A.J. Mozer, P. Wagner, T.W. Schmidt, A. Nattestad, An intermediate band dye-sensitised solar cell using triplet-triplet annihilation. Phys. Chem. Chem. Phys. 17(38), 24826–24830 (2015)

    Article  CAS  Google Scholar 

  21. H. Lee, L.J. Kepley, H.G. Hong, S. Akhter, T.E. Mallouk, Adsorption of ordered zirconium phosphonate multilayer films on silicon and gold surfaces. J. Phys. Chem. 92(9), 2597–2601 (1988)

    Article  CAS  Google Scholar 

  22. H. Lee, L.J. Kepley, H.G. Hong, T.E. Mallouk, Inorganic analogs of Langmuir-Blodgett films: adsorption of ordered zirconium 1,10-decanebisphosphonate multilayers on silicon surfaces. J. Am. Chem. Soc. 110(2), 618–620 (1988)

    Article  CAS  Google Scholar 

  23. H.E. Katz, Multilayer deposition of novel organophosphonates with zirconium(IV). Chem. Mater. 6(12), 2227–2232 (1994)

    Article  CAS  Google Scholar 

  24. H.E. Katz, G. Scheller, T.M. Putvinski, M.L. Schilling, W.L. Wilson, C.E.D. Chidsey, Polar orientation of dyes in robust multilayers by zirconium phosphate-phosphonate interlayers. Science 254(5037), 1485–1487 (1991)

    Article  CAS  Google Scholar 

  25. T. Ishida, K.-I. Terada, K. Hasegawa, H. Kuwahata, K. Kusama, R. Sato, M. Nakano, Y. Naitoh, M.-A. Haga, Self-assembled monolayer and multilayer formation using redox-active Ru complex with phosphonic acids on silicon oxide surface. Appl. Surf. Sci. 255(21), 8824–8830 (2009)

    Article  CAS  Google Scholar 

  26. T. Keiichi, K. Katsuaki, H. Jiro, H. Masa-aki, Electric conduction properties of self-assembled monolayer films of Ru complexes with disulfide/phosphonate anchors in a Au–(molecular ensemble)–(Au nanoparticle) junction. Chem. Lett. 38(5), 416–417 (2009)

    Article  CAS  Google Scholar 

  27. L.A. Vermeulen, J.L. Snover, L.S. Sapochak, M.E. Thompson, Efficient photoinduced charge separation in layered zirconium viologen phosphonate compounds. J. Am. Chem. Soc. 115(25), 11767–11774 (1993)

    Article  CAS  Google Scholar 

  28. S.B. Ungashe, W.L. Wilson, H.E. Katz, G.R. Scheller, T.M. Putvinski, Synthesis, self-assembly, and photophysical dynamics of stacked layers of porphyrin and viologen phosphonates. J. Am. Chem. Soc. 114(22), 8717–8719 (1992)

    Article  CAS  Google Scholar 

  29. K. Hanson, D.A. Torelli, A.K. Vannucci, M.K. Brennaman, H. Luo, L. Alibabaei, W. Song, D.L. Ashford, M.R. Norris, C.R.K. Glasson, J.J. Concepcion, T.J. Meyer, Self-assembled bilayer films of ruthenium(II)/polypyridyl complexes through layer-by-layer deposition on nanostructured metal oxides. Angew. Chem. Int. Ed. 51(51), 12782–12785 (2012)

    Article  CAS  Google Scholar 

  30. O.O. Ogunsolu, I.A. Murphy, J.C. Wang, A. Das, K. Hanson, Energy and electron transfer cascade in self-assembled bilayer dye-sensitized solar cells. ACS Appl. Mater. Interfaces 8(42), 28633–28640 (2016)

    Article  CAS  Google Scholar 

  31. O.O. Ogunsolu, J.C. Wang, K. Hanson, Inhibiting interfacial recombination events in dye-sensitized solar cells using self-assembled bilayers. ACS Appl. Mater. Interfaces 7(50), 27730–27734 (2015)

    Article  CAS  Google Scholar 

  32. X. Ding, Y. Gao, L. Zhang, Z. Yu, J. Liu, L. Sun, Visible light-driven water splitting in photoelectrochemical cells with supramolecular catalysts on photoanodes. ACS Catal. 4(7), 2347–2350 (2014)

    Article  CAS  Google Scholar 

  33. A.J. Robb, E.S. Knorr, N. Watson, K. Hanson, Metal ion linked multilayers on mesoporous substrates: energy/electron transfer, photon upconversion, and more. J. Photochem. Photobiol. A Chem. 390, 112291 (2020)

    Article  CAS  Google Scholar 

  34. T. Dilbeck, K. Hanson, Molecular photon upconversion solar cells using multilayer assemblies: progress and prospects. J. Phys. Chem. Lett. 9(19), 5810–5821 (2018)

    Article  CAS  Google Scholar 

  35. S.P. Hill, T. Banerjee, T. Dilbeck, K. Hanson, Photon upconversion and photocurrent generation via self-assembly at organic–inorganic interfaces. J. Phys. Chem. Lett. 6(22), 4510–4517 (2015)

    Article  CAS  Google Scholar 

  36. T.N. Singh-Rachford, F.N. Castellano, Photon upconversion based on sensitized triplet–triplet annihilation. Coord. Chem. Rev. 254(21), 2560–2573 (2010)

    Article  CAS  Google Scholar 

  37. D.V. Kozlov, F.N. Castellano, Anti-Stokes delayed fluorescence from metal–organic bichromophores. Chem. Commun. 24, 2860–2861 (2004)

    Article  Google Scholar 

  38. S.P. Hill, T. Dilbeck, E. Baduell, K. Hanson, Integrated photon upconversion solar cell via molecular self-assembled bilayers. ACS Energy Lett. 1(1), 3–8 (2016)

    Article  CAS  Google Scholar 

  39. M.K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E. Mueller, P. Liska, N. Vlachopoulos, M. Graetzel, Conversion of light to electricity by cis-X2bis(2,2′-bipyridyl-4,4′-dicarboxylate)ruthenium(II) charge-transfer sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes. J. Am. Chem. Soc. 115(14), 6382–6390 (1993)

    Article  CAS  Google Scholar 

  40. Y. Zhou, S. Ayad, C. Ruchlin, V. Posey, S.P. Hill, Q. Wu, K. Hanson, Examining the role of acceptor molecule structure in self-assembled bilayers: surface loading, stability, energy transfer, and upconverted emission. Phys. Chem. Chem. Phys. 20(31), 20513–20524 (2018)

    Article  CAS  Google Scholar 

  41. Y. Zhou, S.P. Hill, K. Hanson, Influence of meta- and para-phosphonated diphenylanthracene on photon upconversion in self-assembled bilayers. J. Photonics Energy 8(11), 1–11 (2018)

    Google Scholar 

  42. T. Ogawa, N. Yanai, A. Monguzzi, N. Kimizuka, Highly efficient photon upconversion in self-assembled light-harvesting molecular systems. Sci. Rep. 5, 10882 (2015)

    Article  CAS  Google Scholar 

  43. S.P. Hill, K. Hanson, Harnessing molecular photon upconversion in a solar cell at sub-solar irradiance: role of the redox mediator. J. Am. Chem. Soc. 139(32), 10988–10991 (2017)

    Article  CAS  Google Scholar 

  44. S.A. Sapp, C.M. Elliott, C. Contado, S. Caramori, C.A. Bignozzi, Substituted polypyridine complexes of cobalt(II/III) as efficient electron-transfer mediators in dye-sensitized solar cells. J. Am. Chem. Soc. 124(37), 11215–11222 (2002)

    Article  CAS  Google Scholar 

  45. E. Mosconi, J.-H. Yum, F. Kessler, C.J. Gómez García, C. Zuccaccia, A. Cinti, M.K. Nazeeruddin, M. Grätzel, F. De Angelis, Cobalt electrolyte/dye interactions in dye-sensitized solar cells: a combined computational and experimental study. J. Am. Chem. Soc. 134(47), 19438–19453 (2012)

    Article  CAS  Google Scholar 

  46. T. Dilbeck, S.P. Hill, K. Hanson, Harnessing molecular photon upconversion at sub-solar irradiance using dual sensitized self-assembled trilayers. J. Mater. Chem. A 5(23), 11652–11660 (2017)

    Article  CAS  Google Scholar 

  47. Y. Zhou, C. Ruchlin, A.J. Robb, K. Hanson, Singlet sensitization-enhanced upconversion solar cells via self-assembled trilayers. ACS Energy Lett. 4(6), 1458–1463 (2019)

    Article  CAS  Google Scholar 

  48. J. Pedrini, A. Monguzzi, F. Meinardi, Cascade sensitization of triplet–triplet annihilation based photon upconversion at sub-solar irradiance. Phys. Chem. Chem. Phys. 20(15), 9745–9750 (2018)

    Article  CAS  Google Scholar 

  49. H. Gliemann, C. Wöll, Epitaxially grown metal-organic frameworks. Mater. Today 15(3), 110–116 (2012)

    Article  CAS  Google Scholar 

  50. S. Ahmad, J. Liu, C. Gong, J. Zhao, L. Sun, Photon up-conversion via epitaxial surface-supported metal–organic framework thin films with enhanced photocurrent. ACS Appl. Energy Mater. 1(2), 249–253 (2018)

    Article  CAS  Google Scholar 

  51. Z. Wang, A. Knebel, S. Grosjean, D. Wagner, S. Bräse, C. Wöll, J. Caro, L. Heinke, Tunable molecular separation by nanoporous membranes. Nat. Commun. 7, 13872–13872 (2016)

    Article  CAS  Google Scholar 

  52. J. Lin, X. Hu, P. Zhang, A. Van Rynbach, D.N. Beratan, C.A. Kent, B.P. Mehl, J.M. Papanikolas, T.J. Meyer, W. Lin, S.S. Skourtis, M. Constantinou, Triplet excitation energy dynamics in metal–organic frameworks. J. Phys. Chem. C 117(43), 22250–22259 (2013)

    Article  CAS  Google Scholar 

  53. C.A. Kent, B.P. Mehl, L. Ma, J.M. Papanikolas, T.J. Meyer, W. Lin, Energy transfer dynamics in metal−organic frameworks. J. Am. Chem. Soc. 132(37), 12767–12769 (2010)

    Article  CAS  Google Scholar 

  54. T. Morifuji, Y. Takekuma, M. Nagata, Integrated photon upconversion dye-sensitized solar cell by co-adsorption with derivative of Pt–porphyrin and anthracene on mesoporous TiO2. ACS Omega 4(6), 11271–11275 (2019)

    Article  CAS  Google Scholar 

  55. J.C. Goldschmidt, S. Fischer, Upconversion for photovoltaics—a review of materials, devices and concepts for performance enhancement. Adv. Opt. Mater. 3(4), 510–535 (2015)

    Article  CAS  Google Scholar 

  56. C. Mongin, S. Garakyaraghi, N. Razgoniaeva, M. Zamkov, F.N. Castellano, Direct observation of triplet energy transfer from semiconductor nanocrystals. Science 351(6271), 369 (2016)

    Article  CAS  Google Scholar 

  57. Z. Huang, X. Li, M. Mahboub, K.M. Hanson, V.M. Nichols, H. Le, M.L. Tang, C.J. Bardeen, Hybrid molecule–nanocrystal photon upconversion across the visible and near-infrared. Nano Lett. 15(8), 5552–5557 (2015)

    Article  CAS  Google Scholar 

  58. Z. Huang, X. Li, B.D. Yip, J.M. Rubalcava, C.J. Bardeen, M.L. Tang, Nanocrystal size and quantum yield in the upconversion of green to violet light with CdSe and anthracene derivatives. Chem. Mater. 27(21), 7503–7507 (2015)

    Article  CAS  Google Scholar 

  59. M. Mahboub, Z. Huang, M.L. Tang, Efficient infrared-to-visible upconversion with subsolar irradiance. Nano Lett. 16(11), 7169–7175 (2016)

    Article  CAS  Google Scholar 

  60. A. Ronchi, P. Brazzo, M. Sassi, L. Beverina, J. Pedrini, F. Meinardi, A. Monguzzi, Triplet–triplet annihilation based photon up-conversion in hybrid molecule–semiconductor nanocrystal systems. Phys. Chem. Chem. Phys. 21(23), 12353–12359 (2019)

    Article  CAS  Google Scholar 

  61. K. Okumura, K. Mase, N. Yanai, N. Kimizuka, Employing core-shell quantum dots as triplet sensitizers for photon upconversion. Chem. Eur. J. 22(23), 7721–7726 (2016)

    Article  CAS  Google Scholar 

  62. B. Shan, T.-T. Li, M.K. Brennaman, A. Nayak, L. Wu, T.J. Meyer, Charge transfer from upconverting nanocrystals to semiconducting electrodes: optimizing thermodynamic outputs by electronic energy transfer. J. Am. Chem. Soc. 141(1), 463–471 (2019)

    Article  CAS  Google Scholar 

  63. C. Mongin, P. Moroz, M. Zamkov, F.N. Castellano, Thermally activated delayed photoluminescence from pyrenyl-functionalized CdSe quantum dots. Nat. Chem. 10(2), 225–230 (2018)

    Article  CAS  Google Scholar 

  64. S. Garakyaraghi, F.N. Castellano, Nanocrystals for triplet sensitization: molecular behavior from quantum-confined materials. Inorg. Chem. 57(5), 2351–2359 (2018)

    Article  CAS  Google Scholar 

  65. R. Rossetti, J.L. Ellison, J.M. Gibson, L.E. Brus, Size effects in the excited electronic states of small colloidal CdS crystallites. J. Chem. Phys. 80(9), 4464–4469 (1984)

    Article  CAS  Google Scholar 

  66. D. Beery, J.P. Wheeler, A. Arcidiacono, K. Hanson, CdSe quantum dot sensitized molecular photon upconversion solar cells. ACS Appl. Energy Mater. 3(1), 29–37 (2020)

    Article  CAS  Google Scholar 

  67. Y. Xie, J. Baillargeon, T.W. Hamann, Kinetics of regeneration and recombination reactions in dye-sensitized solar cells employing cobalt redox shuttles. J. Phys. Chem. C 119(50), 28155–28166 (2015)

    Article  CAS  Google Scholar 

  68. S. Chinnathambi, N. Shirahata, Recent advances on fluorescent biomarkers of near-infrared quantum dots for in vitro and in vivo imaging. Sci. Technol. Adv. Mater. 20(1), 337–355 (2019)

    Article  CAS  Google Scholar 

  69. J.M. Pietryga, Y.-S. Park, J. Lim, A.F. Fidler, W.K. Bae, S. Brovelli, V.I. Klimov, Spectroscopic and device aspects of nanocrystal quantum dots. Chem. Rev. 116(18), 10513–10622 (2016)

    Article  CAS  Google Scholar 

  70. Y.L. Lin, M. Koch, A.N. Brigeman, D.M.E. Freeman, L. Zhao, H. Bronstein, N.C. Giebink, G.D. Scholes, B.P. Rand, Enhanced sub-bandgap efficiency of a solid-state organic intermediate band solar cell using triplet-triplet annihilation. Energy Environ. Sci. 10(6), 1465–1475 (2017)

    Article  CAS  Google Scholar 

  71. K.M. Felter, M.C. Fravventura, E. Koster, R.D. Abellon, T.J. Savenije, F.C. Grozema, Solid-state infrared upconversion in perylene diimides followed by direct electron injection. ACS Energy Lett. 5(1), 124–129 (2020)

    Article  CAS  Google Scholar 

  72. L. Frazer, J.K. Gallaher, T.W. Schmidt, Optimizing the efficiency of solar photon upconversion. ACS Energy Lett. 2(6), 1346–1354 (2017)

    Article  CAS  Google Scholar 

  73. Y.Y. Cheng, B. Fückel, T. Schulze, R. MacQueen, M. Tayebjee, A. Danos, T. Khoury, R.G. Clady, N. Ekins-Daukes, M. Crossley, B. Stannowski, K. Lips, T. Schmidt, Improving the light-harvesting of second generation solar cells with photochemical upconversion. SPIE 8477 (2012)

    Google Scholar 

  74. Y.Y. Cheng, B. Fuckel, R.W. MacQueen, T. Khoury, R.G.C.R. Clady, T.F. Schulze, N.J. Ekins-Daukes, M.J. Crossley, B. Stannowski, K. Lips, T.W. Schmidt, Improving the light-harvesting of amorphous silicon solar cells with photochemical upconversion. Energy Environ. Sci. 5(5), 6953–6959 (2012)

    Article  CAS  Google Scholar 

  75. T.F. Schulze, J. Czolk, Y.-Y. Cheng, B. Fückel, R.W. MacQueen, T. Khoury, M.J. Crossley, B. Stannowski, K. Lips, U. Lemmer, A. Colsmann, T.W. Schmidt, Efficiency enhancement of organic and thin-film silicon solar cells with photochemical upconversion. J. Phys. Chem. C 116(43), 22794–22801 (2012)

    Article  CAS  Google Scholar 

  76. A.L. Hagstrom, F. Deng, J.-H. Kim, Enhanced triplet–triplet annihilation upconversion in dual-sensitizer systems: translating broadband light absorption to practical solid-state materials. ACS Photonics 4(1), 127–137 (2017)

    Article  CAS  Google Scholar 

  77. D. Dzebo, K. Moth-Poulsen, B. Albinsson, Robust triplet–triplet annihilation photon upconversion by efficient oxygen scavenging. Photochem. Photobiol. Sci. 16(8), 1327–1334 (2017)

    Article  CAS  Google Scholar 

  78. C. Li, C. Koenigsmann, F. Deng, A. Hagstrom, C.A. Schmuttenmaer, J.-H. Kim, Photocurrent enhancement from solid-state triplet–triplet annihilation upconversion of low-intensity, low-energy photons. ACS Photonics 3(5), 784–790 (2016)

    Article  CAS  Google Scholar 

  79. D. Di, L. Yang, J.M. Richter, L. Meraldi, R.M. Altamimi, A.Y. Alyamani, D. Credgington, K.P. Musselman, J.L. MacManus-Driscoll, R.H. Friend, Efficient triplet exciton fusion in molecularly doped polymer light-emitting diodes. Adv. Mater. 29(13), 1605987 (2017)

    Article  CAS  Google Scholar 

  80. T.F. Schulze, Y.Y. Cheng, B. Fückel, R.W. MacQueen, A. Danos, N.J.L.K. Davis, M.J.Y. Tayebjee, T. Khoury, R.G.C.R. Clady, N.J. Ekins-Daukes, M.J. Crossley, B. Stannowski, K. Lips, T.W. Schmidt, Photochemical upconversion enhanced solar cells: effect of a back reflector. Aust. J. Chem. 65(5), 480–485 (2012)

    Article  CAS  Google Scholar 

  81. T. Schulze, Y.Y. Cheng, T. Khoury, M. Crossley, B. Stannowski, K. Lips, T. Schmidt, Micro-optical design of photochemical upconverters for thin-film solar cells. J. Photonics Energy 3(1), 034598 (2013)

    Article  CAS  Google Scholar 

  82. A. Monguzzi, S.M. Borisov, J. Pedrini, I. Klimant, M. Salvalaggio, P. Biagini, F. Melchiorre, C. Lelii, F. Meinardi, Efficient broadband triplet–triplet annihilation-assisted photon upconversion at subsolar irradiance in fully organic systems. Adv. Funct. Mater. 25(35), 5617–5624 (2015)

    Article  CAS  Google Scholar 

  83. Y.Y. Cheng, A. Nattestad, T.F. Schulze, R.W. MacQueen, B. Fuckel, K. Lips, G.G. Wallace, T. Khoury, M.J. Crossley, T.W. Schmidt, Increased upconversion performance for thin film solar cells: a trimolecular composition. Chem. Sci. 7(1), 559–568 (2016)

    Article  CAS  Google Scholar 

  84. S. Hoseinkhani, R. Tubino, F. Meinardi, A. Monguzzi, Achieving the photon up-conversion thermodynamic yield upper limit by sensitized triplet–triplet annihilation. Phys. Chem. Chem. Phys. 17(6), 4020–4024 (2015)

    Article  CAS  Google Scholar 

  85. M.C. DeRosa, R.J. Crutchley, Photosensitized singlet oxygen and its applications. Coord. Chem. Rev. 233–234, 351–371 (2002)

    Article  Google Scholar 

  86. J.L. Charlton, R. Dabestani, J. Saltiel, Role of triplet-triplet annihilation in anthracene dimerization. J. Am. Chem. Soc. 105(11), 3473–3476 (1983)

    Article  CAS  Google Scholar 

  87. J. Saltiel, B.W. Atwater, Spin-Statistical Factors in Diffusion-Controlled Reactions. In Advances in Photochemistry (eds D. H. Volman, G. S. Hammond and K. Gollnick). (1988)

    Google Scholar 

  88. A.J. McLean, T.G. Truscott, Faraday communications. Efficiency of triplet-photosensitised singlet oxygen generation in benzene. J. Chem. Soc. Faraday Trans. 86(14), 2671–2672 (1990)

    Article  CAS  Google Scholar 

  89. S.M. Bachilo, R.B. Weisman, Determination of triplet quantum yields from triplet−triplet annihilation fluorescence. Chem. A Eur. J. 104(33), 7711–7714 (2000)

    CAS  Google Scholar 

  90. B.M. Klahr, T.W. Hamann, Performance enhancement and limitations of cobalt bipyridyl redox shuttles in dye-sensitized solar cells. J. Phys. Chem. C 113(31), 14040–14045 (2009)

    Article  CAS  Google Scholar 

  91. P.M. Sommeling, B.C. O’Regan, R.R. Haswell, H.J.P. Smit, N.J. Bakker, J.J.T. Smits, J.M. Kroon, J.A.M. van Roosmalen, Influence of a TiCl4 post-treatment on nanocrystalline TiO2 films in dye-sensitized solar cells. J. Phys. Chem. B 110(39), 19191–19197 (2006)

    Article  CAS  Google Scholar 

  92. R. Englman, J. Jortner, The energy gap law for radiationless transitions in large molecules. Mol. Phys. 18(2), 145–164 (1970)

    Article  CAS  Google Scholar 

  93. K.F. Freed, J. Jortner, Multiphonon processes in the nonradiative decay of large molecules. J. Chem. Phys. 52(12), 6272–6291 (1970)

    Article  CAS  Google Scholar 

  94. W. Shockley, H.J. Queisser, Detailed balance limit of efficiency of p-n junction solar cells. J. Appl. Phys. 32(3), 510–519 (1961)

    Article  CAS  Google Scholar 

  95. S.K. Balasingam, M. Lee, M.G. Kang, Y. Jun, Improvement of dye-sensitized solar cells toward the broader light harvesting of the solar spectrum. Chem. Commun. 49(15), 1471–1487 (2013)

    Article  CAS  Google Scholar 

  96. K. Kakiage, Y. Aoyama, T. Yano, K. Oya, J.-I. Fujisawa, M. Hanaya, Highly-efficient dye-sensitized solar cells with collaborative sensitization by silyl-anchor and carboxy-anchor dyes. Chem. Commun. 51(88), 15894–15897 (2015)

    Article  CAS  Google Scholar 

  97. W.S. Yang, B.-W. Park, E.H. Jung, N.J. Jeon, Y.C. Kim, D.U. Lee, S.S. Shin, J. Seo, E.K. Kim, J.H. Noh, S.I. Seok, Iodide management in formamidinium-lead-halide-based perovskite layers for efficient solar cells. Science 356(6345), 1376–1379 (2017)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth Hanson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhou, Y., Hanson, K. (2022). Electronically Coupled TTA-UC Solar Cells. In: Lissau, J.S., Madsen, M. (eds) Emerging Strategies to Reduce Transmission and Thermalization Losses in Solar Cells. Springer, Cham. https://doi.org/10.1007/978-3-030-70358-5_11

Download citation

Publish with us

Policies and ethics