Skip to main content

Blockchain Smart Contract for Cellular Automata-Based Energy Sharing

  • Conference paper
  • First Online:
Cellular Automata (ACRI 2020)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12599))

  • 478 Accesses

Abstract

This paper deals with energy management in a microgrid through peer-to-peer (P2P) energy exchange method. The P2P process is executed on the basis of cellular automaton (CA) approach and implemented by smart contracts blockchain over a time horizon, enabling consensus to be recorded between consumers in a secure and fully automated transaction. The CA proposed model identifies the end-user state in a set of five possible states and supports the convergence of supply and demand decisions, thus ensuring the decentralization of energy distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ethereum Revision 8dda9521. Solidity, v0.6.3. https://solidity.readthedocs.io/en/v0.6.3/. 2016–2020

  2. Abdennour, I., Ouardouz, M., Bernoussi, A.S.: Peer-to-peer energy sharing using cellular automata approach. In: Ezziyyani, M. (ed.) AI2SD 2019. LNEE, vol. 624, pp. 221–228. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-36475-5_21

    Chapter  Google Scholar 

  3. Albrecht, S.. Reichert, S., Schmid, J., Strüker, J., Neumann, D., Fridgen, G.: Dynamics of blockchain implementation-a case study from the energy sector. In: Proceedings of the 51st Hawaii International Conference on System Sciences (2018)

    Google Scholar 

  4. Andoni, M., et al.: Blockchain technology in the energy sector: a systematic review of challenges and opportunities. Renew. Sustain. Energy Rev. 100, 143–174 (2019)

    Article  Google Scholar 

  5. Brilliantova, V., Thurner, T.W.: Blockchain and the future of energy. Technol. Soc. 57, 38–45 (2019)

    Article  Google Scholar 

  6. Dannen, C.: Introducing Ethereum and Solidity, vol. 1. Springer, Heidelberg (2017). https://doi.org/10.1007/978-1-4842-2535-6

    Book  Google Scholar 

  7. Dubai Electricity Dubai Supreme Council of Energy, Water Authority, and the U.S. Department of Energy. Solar decathlon middle east competition (2018). https://sdme-contest.com

  8. IRENA: Global energy transformation: a roadmap to 2050 (2018)

    Google Scholar 

  9. Jiang, Y., Zhou, K., Xinhui, L., Yang, S.: Electricity trading pricing among prosumers with game theory-based model in energy blockchain environment. Appl. Energy 271, 115239 (2020)

    Article  Google Scholar 

  10. Karamitsos, I., Papadaki, M., Barghuthi, N.B.A.: Design of the blockchain smart contract: a use case for real estate. J. Inf. Secur. 9(3), 177–190 (2018)

    Google Scholar 

  11. Li, Y., Yang, W., He, P., Chen, C., Wang, X.: Design and management of a distributed hybrid energy system through smart contract and blockchain. Appl. Energy 248, 390–405 (2019)

    Article  Google Scholar 

  12. Mohsenian-Rad, A.-H., Wong, V.W.S., Jatskevich, J., Schober, R., Leon-Garcia, A.: Autonomous demand-side management based on game-theoretic energy consumption scheduling for the future smart grid. IEEE Trans. Smart Grid 1(3), 320–331 (2010)

    Article  Google Scholar 

  13. U.S. Department of Energy. Solar decathlon (2020). https://www.solardecathlon.gov/about.html

  14. Reed, D., Sporny, M., Longley, D., Allen, C., Grant, R., Sabadello, M.: Decentralized identifiers (dids) v0. 11. W3C, Draft Community Group Report, 9 (2018)

    Google Scholar 

  15. Szabo, N.: Smart contracts: building blocks for digital markets. EXTROPY: J. Transhumanist Thought (16) 18(2) (1996)

    Google Scholar 

  16. Utz, M., Albrecht, S., Zoerner, T., Strüker, J.: Blockchain-based management of shared energy assets using a smart contract ecosystem. In: Abramowicz, W., Paschke, A. (eds.) BIS 2018. LNBIP, vol. 339, pp. 217–222. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-04849-5_19

    Chapter  Google Scholar 

  17. Wang, N., et al.: When energy trading meets blockchain in electrical power system: the state of the art. Appl. Sci. 9(8), 1561 (2019)

    Article  Google Scholar 

  18. Zhang, H., Wang, J., Ding, Y.: Blockchain-based decentralized and secure keyless signature scheme for smart grid. Energy 180, 955–967 (2019)

    Article  Google Scholar 

Download references

Acknowledgments

This work has been supported by MESRSFC and CNRST under the project PPR2-OGI-Env, reference PPR2/2016/79.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iliasse Abdennour .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Abdennour, I., Ouardouz, M., Bernoussi, A.S. (2021). Blockchain Smart Contract for Cellular Automata-Based Energy Sharing. In: Gwizdałła, T.M., Manzoni, L., Sirakoulis, G.C., Bandini, S., Podlaski, K. (eds) Cellular Automata. ACRI 2020. Lecture Notes in Computer Science(), vol 12599. Springer, Cham. https://doi.org/10.1007/978-3-030-69480-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-69480-7_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-69479-1

  • Online ISBN: 978-3-030-69480-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics