Skip to main content

HOTVis: Higher-Order Time-Aware Visualisation of Dynamic Graphs

  • Conference paper
  • First Online:
Graph Drawing and Network Visualization (GD 2020)

Abstract

Network visualisation techniques are important tools for the exploratory analysis of complex systems. While these methods are regularly applied to visualise data on complex networks, we increasingly have access to time series data that can be modelled as temporal networks or dynamic graphs. In dynamic graphs, the temporal ordering of time-stamped edges determines the causal topology of a system, i.e., which nodes can, directly and indirectly, influence each other via a so-called causal path. This causal topology is crucial to understand dynamical processes, assess the role of nodes, or detect clusters. However, we lack graph drawing techniques that incorporate this information into static visualisations. Addressing this gap, we present a novel dynamic graph visualisation algorithm that utilises higher-order graphical models of causal paths in time series data to compute time-aware static graph visualisations. These visualisations combine the simplicity and interpretability of static graphs with a time-aware layout algorithm that highlights patterns in the causal topology that result from the temporal dynamics of edges .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Archambault, D., Purchase, H.C.: Mental map preservation helps user orientation in dynamic graphs. In: Didimo, W., Patrignani, M. (eds.) GD 2012. LNCS, vol. 7704, pp. 475–486. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36763-2_42

    Chapter  Google Scholar 

  2. Beck, F., Burch, M., Diehl, S., Weiskopf, D.: A taxonomy and survey of dynamic graph visualization 36(1), 133–159 (2017)

    Google Scholar 

  3. Brandes, U., Kenis, P., Wagner, D.: Communicating centrality in policy network drawings. IEEE Trans. Visual. Comput. Graph. 9(2), 241–253 (2003)

    Article  Google Scholar 

  4. Burch, M., et al.: Radial edge splatting for visualizing dynamic directed graphs, pp. 603–612 (2012)

    Google Scholar 

  5. De Bruijn, N.G.: A combinatorial problem. Koninklijke Nederlandse Akademie v. Wetenschappen 49(49), 758–764 (1946)

    MATH  Google Scholar 

  6. Pathpy developers: pathpy software package (2020). https://github.com/pathpy/pathpy

  7. Di Battista, G., Eades, P., Tamassia, R., Tollis, I.G.: Algorithms for drawing graphs: an annotated bibliography. Comput. Geom. 4(5), 235–282 (1994)

    Article  MathSciNet  Google Scholar 

  8. Diehl, S., Görg, C., Kerren, A.: Preserving the mental map using foresighted layout. In: Ebert, D.S., Favre, J.M., Peikert, R. (eds.) Data Visualization 2001, pp. 175–184. Springer, Vienna (2001). https://doi.org/10.1007/978-3-7091-6215-6_19

    Chapter  Google Scholar 

  9. van den Elzen, S., Holten, D., Blaas, J., van Wijk, J.J.: Dynamic network visualization with extended massive sequence views. IEEE Trans. Visual. Comput. Graph. 20(8), 1087–1099 (2013)

    Article  Google Scholar 

  10. Erten, C., Kobourov, S.G., Le, V., Navabi, A.: Simultaneous graph drawing: layout algorithms and visualization schemes. In: Liotta, G. (ed.) GD 2003. LNCS, vol. 2912, pp. 437–449. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24595-7_41

    Chapter  MATH  Google Scholar 

  11. Friedrich, C., Eades, P.: The marey graph animation tool demo. In: Marks, J. (ed.) GD 2000. LNCS, vol. 1984, pp. 396–406. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44541-2_37

    Chapter  MATH  Google Scholar 

  12. Fruchterman, T.M., Reingold, E.M.: Graph drawing by force-directed placement. Softw. Pract. Exp. 21(11), 1129–1164 (1991)

    Article  Google Scholar 

  13. Génois, M., et al.: Data on face-to-face contacts in an office building suggest a low-cost vaccination strategy based on community linkers. Netw. Sci. 3(3), 326–347 (2015)

    Article  Google Scholar 

  14. Görg, C., Birke, P., Pohl, M., Diehl, S.: Dynamic graph drawing of sequences of orthogonal and hierarchical graphs. In: Pach, J. (ed.) GD 2004. LNCS, vol. 3383, pp. 228–238. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-31843-9_24

    Chapter  MATH  Google Scholar 

  15. Greilich, M., Burch, M., Diehl, S.: Visualizing the evolution of compound digraphs with timearctrees. In: Computer Graphics Forum, vol. 28, pp. 975–982. Wiley Online Library (2009)

    Google Scholar 

  16. Holme, P.: Modern temporal network theory: a colloquium. Eur. Phys. J. B 88(9), 1–30 (2015). https://doi.org/10.1140/epjb/e2015-60657-4

    Article  Google Scholar 

  17. Jacomy, M., Venturini, T., Heymann, S., Bastian, M.: Forceatlas2, a continuous graph layout algorithm for handy network visualization designed for the gephi software. PloS one 9(6), e98679 (2014)

    Article  Google Scholar 

  18. Kaufmann, M., Wagner, D.: Drawing Graphs: Methods and Models, vol. 2025. Springer, Cham (2003)

    MATH  Google Scholar 

  19. Kempe, D., Kleinberg, J., Kumar, A.: Connectivity and inference problems for temporal networks. J. Comput. Syst. Sci. 64, 820–842 (2002)

    Article  MathSciNet  Google Scholar 

  20. Kumar, G., Garland, M.: Visual exploration of complex time-varying graphs. IEEE Trans. Visual. Comput. Graph. 12(5), 805–812 (2006)

    Article  Google Scholar 

  21. Lambiotte, R., Rosvall, M., Scholtes, I.: From networks to optimal higher-order models of complex systems. Nat. Phys. 15(4), 313–320 (2019)

    Article  Google Scholar 

  22. Loubier, E., Dousset, B.: Temporal and relational data representation by graph morphing. Saf. Reliab. Manag. Risk (ESREL 2008), Hammamet 14(02), 2008–2016 (2008)

    Google Scholar 

  23. Nesbitt, K.V., Friedrich, C.: Applying gestalt principles to animated visualizations of network data. In: Proceedings Sixth International Conference on Information Visualisation, pp. 737–743. IEEE (2002)

    Google Scholar 

  24. Noguchi, C., Kawamoto, T.: Evaluating network partitions through visualization. arXiv e-prints arXiv:1906.00699, June 2019

  25. Perri, V., Scholtes, I.: Hotvis: Higher-order time-aware visualisation of dynamic graphs (2020). https://arxiv.org/abs/1908.05976

  26. Perri, V., Scholtes, I.: Hotvis: Higher-order time-aware visualisation of dynamic graphs (supplementary code and data) (2020). https://doi.org/10.5281/zenodo.3994152

  27. Petrović, L.V., Scholtes, I.: Learning the markov order of paths in a network. arXiv preprint arXiv:2007.02861 (2020)

  28. Pfitzner, R., Scholtes, I., Garas, A., Tessone, C.J., Schweitzer, F.: Betweenness preference: quantifying correlations in the topological dynamics of temporal networks. Phys. Rev. Lett. 110, 198701 (2013)

    Article  Google Scholar 

  29. Purchase, H.C., Hoggan, E., Görg, C.: How important is the “mental map” – an empirical investigation of a dynamic graph layout algorithm. In: Kaufmann, M., Wagner, D. (eds.) GD 2006. LNCS, vol. 4372, pp. 184–195. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-70904-6_19

    Chapter  MATH  Google Scholar 

  30. Scholtes, I.: When is a network a network? Multi-order graphical model selection in pathways and temporal networks, pp. 1037–1046. ACM (2017)

    Google Scholar 

  31. Shewchuk, J.R.: Adaptive precision floating-point arithmetic and fast robust geometric predicates. Discrete Comput. Geom. 18(3), 305–363 (1997)

    Article  MathSciNet  Google Scholar 

  32. Simonetto, P., Archambault, D., Kobourov, S.: Drawing dynamic graphs without timeslices. In: Frati, F., Ma, K.-L. (eds.) GD 2017. LNCS, vol. 10692, pp. 394–409. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-73915-1_31

    Chapter  MATH  Google Scholar 

  33. Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.F., Quaggiotto, M., Van den Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8), e23176 (2011)

    Article  Google Scholar 

  34. Tao, J., Xu, J., Wang, C., Chawla, N.V.: Honvis: Visualizing and exploring higher-order networks. In: 2017 IEEE Pacific Visualization Symposium (PacificVis), pp. 1–10. IEEE (2017)

    Google Scholar 

  35. Vanhems, P., et al.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one 8(9), e73970 (2013)

    Article  Google Scholar 

  36. Vehlow, C., Burch, M., Schmauder, H., Weiskopf, D.: Radial layered matrix visualization of dynamic graphs. In: 2013 17th International Conference on Information Visualisation, pp. 51–58. IEEE (2013)

    Google Scholar 

Download references

Acknowledgements

Vincenzo Perri and Ingo Scholtes acknowledge support by the Swiss National Science Foundation, grant 176938. Ingo Scholtes acknowledges support by the project bergisch.smart.mobility, funded by the German state of North Rhine-Westphalia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincenzo Perri .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 59 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Perri, V., Scholtes, I. (2020). HOTVis: Higher-Order Time-Aware Visualisation of Dynamic Graphs. In: Auber, D., Valtr, P. (eds) Graph Drawing and Network Visualization. GD 2020. Lecture Notes in Computer Science(), vol 12590. Springer, Cham. https://doi.org/10.1007/978-3-030-68766-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-68766-3_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-68765-6

  • Online ISBN: 978-3-030-68766-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics