Skip to main content

AARON: Assistive Augmented Reality Operations and Navigation System for NASA’s Exploration Extravehicular Mobility Unit (xEMU)

  • Conference paper
  • First Online:
Intelligent Human Computer Interaction (IHCI 2020)

Abstract

The AARON system is a, reactive, integrated augmented reality (AR) system developed with considerations for collaborative activity. The underlying software architecture and design allows for bi-directional interactions and collaboration between human crewmembers, virtual agents that manage the system and EVA timeline, and robotic systems or smart tools that an astronaut may interact with during an exploration EVA (xEVA). We further present an AR user experience testbed developed to monitor and assess human interactions with the AR system. This testbed is composed of a custom telepresence control suit and a software system that throttles the communication throughput and latency between the AR headset and a control unit, or between simulated crewmembers. This paper outlines the technical design of the system, it’s implementation, the visual design of the AR interface, and the interaction model afforded by the system.

This work was presented at the 2020 NASA SUITS Challenge.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abercromby, A., et al.: Integrated extravehicular activity human research and testing plan, July 2019

    Google Scholar 

  2. Cardenas, I.S., Kim, J.H.: Design of a semi-humanoid telepresence robot for plant disaster response and prevention. In: 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), November 2019

    Google Scholar 

  3. Cardenas, I.S., et al.: Telesuit: an immersive user-centric telepresence control suit. In: 2019 ACM/IEEE International Conference on Human-Robot Interaction HRI (2019)

    Google Scholar 

  4. Chappell, S.P., et al.: Risk of injury and compromised performance due to EVA operations (2015)

    Google Scholar 

  5. Coan, D.: Exploration EVA System ConOps. EVA-EXP-0042, December 2017

    Google Scholar 

  6. Gromov, B., Guzzi, J., Gambardella, L.M., Giusti, A.: Intuitive 3D control of a quadrotor in user proximity with pointing gestures. In: 2020 IEEE International Conference on Robotics and Automation (ICRA) (2020)

    Google Scholar 

  7. Huang, D., Yang, C., Ju, Z., Dai, S.-L.: Disturbance observer enhanced variable gain controller for robot teleoperation with motion capture using wearable armbands. Autonom. Robots 44(7), 1217–1231 (2020). https://doi.org/10.1007/s10514-020-09928-7

    Article  Google Scholar 

  8. Johnson, M., et al.: Coactive design: designing support for interdependence in joint activity. J. Hum. Robot Interact. 3(1), 43–69 (2014)

    Article  Google Scholar 

  9. Klinker, G., Creighton, O., Dutoit, A.H., Kobylinski, R., Vilsmeier, C., Brugge, B.: Augmented maintenance of powerplants: a prototyping case study of a mobile AR system. In: IEEE & ACM International Symposium on Augmented Reality (2001)

    Google Scholar 

  10. NASA: SUITS telemetry stream server (2020). https://github.com/SUITS-teams/BackEnd

  11. Patrick, N., Kosmo, J., Locke, J., Trevino, L., Trevino, R.: Wings in orbit: extravehicular activity operations and advancements, April 2011

    Google Scholar 

  12. Pejsa, T., Kantor, J., Benko, H., Ofek, E., Wilson, A.: Room2room: enabling life-size telepresence in a projected augmented reality environment. In: ACM Conference on Computer-Supported Cooperative Work & Social Computing (2016)

    Google Scholar 

  13. Pidel, C., Ackermann, P.: Collaboration in virtual and augmented reality: a systematic overview. In: De Paolis, L.T., Bourdot, P. (eds.) AVR 2020. LNCS, vol. 12242, pp. 141–156. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58465-8_10

    Chapter  Google Scholar 

  14. Platonov, J., Heibel, H., Meier, P., Grollmann, B.: A mobile markerless AR system for maintenance and repair. In: 2006 IEEE/ACM International Symposium on Mixed and Augmented Reality (2006)

    Google Scholar 

  15. Quintero, C.P., Li, S., Pan, M.K., Chan, W.P., Machiel Van der Loos, H.F., Croft, E.: Robot programming through augmented trajectories in augmented reality. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (2018)

    Google Scholar 

  16. Reddy, S., Dragan, A.D., Levine, S.: Shared autonomy via deep reinforcement learning (2018)

    Google Scholar 

  17. Rolley-Parnell, E., et al.: Bi-manual articulated robot teleoperation using an external RGB-D range sensor. In: 2018 15th International Conference on Control, Automation, Robotics and Vision (ICARCV) (2018)

    Google Scholar 

  18. Shang, J., Wang, H., Liu, X., Yu, Y., Guo, Q.: VR+AR industrial collaboration platform. In: 2018 International Conference on Virtual Reality and Visualization (ICVRV) (2018)

    Google Scholar 

  19. Thanigaivel, N.K., Ong, S.K., Nee, A.: AR assisted robot programming system for industrial applications. Robot. Comput. Integr. Manuf. 61, 101820 (2020)

    Article  Google Scholar 

  20. Walker, M., Hedayati, H., Lee, J., Szafir, D.: Communicating robot motion intent with augmented reality. In: Proceedings of the 2018 ACM/IEEE International Conference on Human-Robot Interaction (2018)

    Google Scholar 

  21. Wang, Y., et al.: Tacotron: towards end-to-end speech synthesis (2017)

    Google Scholar 

  22. Xu, C., Wang, Y., Quan, W., Yang, H.: Multi-person collaborative interaction algorithm and application based on HoloLens. In: Jain, V., Patnaik, S., Popentiu Vladicescu, F., Sethi, I.K. (eds.) Recent Trends in Intelligent Computing, Communication and Devices. AISC, vol. 1006, pp. 303–315. Springer, Singapore (2020). https://doi.org/10.1007/978-981-13-9406-5_37

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jong-Hoon Kim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cardenas, I.S. et al. (2021). AARON: Assistive Augmented Reality Operations and Navigation System for NASA’s Exploration Extravehicular Mobility Unit (xEMU). In: Singh, M., Kang, DK., Lee, JH., Tiwary, U.S., Singh, D., Chung, WY. (eds) Intelligent Human Computer Interaction. IHCI 2020. Lecture Notes in Computer Science(), vol 12616. Springer, Cham. https://doi.org/10.1007/978-3-030-68452-5_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-68452-5_42

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-68451-8

  • Online ISBN: 978-3-030-68452-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics