Skip to main content

Environmental and Industrial Perspective of Beneficial Fungal Communities: Current Research and Future Challenges

  • Chapter
  • First Online:
Recent Trends in Mycological Research

Abstract

Fungi are an incredible group of organisms that are grouped under eukaryotes. The organism falls under the fungi was earlier viewed as damaging and pathogenic organisms that infect and kill plants and animals, but as the time flew and researches were being conducted, dark ages of fungi have fallen away and their benefits got the spotlight. Now days, this group of organism has been using in the fields agriculture, environment and industries. The fungal species ease the life of mankind have been distributed in the wide range of habitats including soil, water having moderate and extreme conditions like hypersalinity, extreme temperatures, pressure and heavy metals accumulated areas which were being used in the field of environment and industries. In environment, this group of organism can be applied for clean pollutants (heavy metals, oil, xenobiotics including DDT, pesticides, halogenated hydrocarbon and synthetic azo dyes) as they are good decomposer of pollutants of the ecosystem created by the human’s activity. On the other hand, fungi can also be applied in the industries as they have a capability of producing several types of extra-cellular digestion enzymes and secondary metabolites which can be used in the several foods, pharmaceuticals, textiles, detergents and paper and pulp industries. This chapter detailed the perspectives of fungi in the field of environment and industrial sectors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abd El-Rahim WM, Moawad H, Abdel Azeiz AZ, Sadowsky MJ (2017) Optimization of conditions for decolorization of azo-based textile dyes by multiple fungal species. J Biotechnol 260:11–17

    Article  CAS  PubMed  Google Scholar 

  • Akhtar S, Mahmood-ul-Hassan M, Ahmad R, Suthor V, Yasin M (2013) Metal tolerance potential of filamentous fungi isolated from soils irrigated with untreated municipal effluent. Soil Environ 32:55–62

    CAS  Google Scholar 

  • Alizadeh-Sani M et al (2018) Bioemulsifiers derived from microorganisms: applications in the drug and food industry. Adv Pharm Bull 8:191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Al-Nasrawi H (2012) Biodegradation of crude oil by fungi isolated from Gulf of Mexico. J Bioremed Biodegr 3:1–6

    Google Scholar 

  • Angumeenal A, Venkappayya D (2005) Artrocarpus heterophyllus—a potential substrate for citric acid biosynthesis using Aspergillus niger LWT-food. Sci Technol 38:89–93

    CAS  Google Scholar 

  • Aravindan R, Anbumathi P, Viruthagiri T (2007) Lipase applications in food industry. Indian J Biotechnol 6:141–158

    CAS  Google Scholar 

  • Asrat B, Girma A (2018) Isolation, production and characterization of amylase enzyme using the isolate Aspergillus niger FAB-211. Int J Biotechnol Mol Biol Res 9:7–14

    Article  CAS  Google Scholar 

  • Awasti N, Anand S (2020) The role of yeast and molds in dairy industry: an update. In: Minj J, Sudhakaran VA, Kumari A (eds) Dairy processing: advanced research to applications. Springer, Singapore, pp 243–262

    Chapter  Google Scholar 

  • Bakri Y, Masson M, Thonart P (2010) Isolation and identification of two new fungal strains for xylanase production. Appl Biochem Biotechnol 162:1626–1634

    Article  CAS  PubMed  Google Scholar 

  • Balaji V, Arulazhagan P, Ebenezer P (2014) Enzymatic bioremediation of polyaromatic hydrocarbons by fungal consortia enriched from petroleum contaminated soil and oil seeds. J Environ Biol 35:521–529

    CAS  PubMed  Google Scholar 

  • Banakar SP, Thippeswamy B (2014a) Isolation and partial purification of fungal ligninolytic enzymes from the forest soil fungi isolated from Bhadra Wildlife Sanctuary. Front Biol 9:291–299

    Article  CAS  Google Scholar 

  • Banakar SP, Thippeswamy B (2014b) Isolation, production and partial purification of fungal extracellular pectinolytic enzymes from the forest soils of Bhadra Wildlife Sanctuary, Western Ghats of Southern. India J Biochem Technol 3:138–143

    Google Scholar 

  • Bharadwaj A (2018) Bioremediation of xenobiotics: an eco-friendly cleanup approach. In: Parmar V, Malhotra P, Mathur D (eds) Green chemistry in environmental sustainability and chemical education. Springer, Singapore, pp 1–13

    Google Scholar 

  • Bibi S et al (2018) Bioremediation of hexavalent chromium by endophytic fungi; safe and improved production of Lactuca sativa L. Chemosphere 211:653–663

    Article  CAS  PubMed  Google Scholar 

  • Bovio E et al (2017) The culturable mycobiota of a Mediterranean marine site after an oil spill: isolation, identification and potential application in bioremediation. Sci Total Environ 576:310–318

    Article  CAS  PubMed  Google Scholar 

  • Butt MS, Tahir-Nadeem M, Ahmad Z, Sultan MT (2008) Xylanases and their applications in baking industry. Food Technol Biotechnol 46:22–31

    CAS  Google Scholar 

  • Chaturvedi AD, Pal D, Penta S, Kumar A (2015) Ecotoxic heavy metals transformation by bacteria and fungi in aquatic ecosystem. World J Microbiol Biotechnol 31:1595–1603

    Article  PubMed  CAS  Google Scholar 

  • Chehregani Rad A, Malayeri BE, Mohsenzadeh F, Shirkhani Z (2014) Screening for plants and rhizospheral fungi with bioremediation potency of petroleum-polluted soils in a Tehran oil refinery area. Toxicol Environ Chem 96:84–93

    Article  CAS  Google Scholar 

  • Chen Z, Ao J, Yang W, Jiao L, Zheng T, Chen X (2013) Purification and characterization of a novel antifungal protein secreted by Penicillium chrysogenum from an Arctic sediment. Appl Microbiol Biotechnol 97:10381–10390

    Article  CAS  PubMed  Google Scholar 

  • Chowdhary K, Prasad U, Sharma S (2018) Role of fungi in biorefinery: a perspective. In: Kumar S, Dheeran P, Taherzadeh M, Khanal S (eds) Fungal Biorefineries. Springer, Cham, pp 1–20

    Google Scholar 

  • Copetti MV (2019) Fungi as industrial producers of food ingredients. Curr Opin Food Sci 25:52–56

    Article  Google Scholar 

  • Cox RJ (2007) Polyketides, proteins and genes in fungi: programmed nano-machines begin to reveal their secrets. Org Biomol Chem 5:2010–2026

    Article  CAS  PubMed  Google Scholar 

  • Cruz-Miranda OL, Folch-Mallol J, MartĂ­nez-Morales F, Gesto-Borroto R, Villarreal ML, Taketa AC (2020) Identification of a Huperzine A-producing endophytic fungus from Phlegmariurus taxifolius. Mol Biol Rep 47:489–495

    Article  CAS  PubMed  Google Scholar 

  • Cruz-MoratĂł C et al (2012) Biodegradation of pharmaceuticals by fungi and metabolites identification. In: Vicent T, Caminal G, Eljarrat E, BarcelĂł D (eds) Emerging organic contaminants in Sludges, The handbook of environmental chemistry, vol 24. Springer, Berlin, Heidelberg, pp 165–213

    Chapter  Google Scholar 

  • Deshmukh R, Khardenavis AA, Purohit HJ (2016) Diverse metabolic capacities of fungi for bioremediation. Indian J Microbiol 56:247–264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deshmukh SK, Prakash V, Ranjan N (2017) Recent advances in the discovery of bioactive metabolites from Pestalotiopsis. Phytochem Rev 16:883–920

    Article  CAS  Google Scholar 

  • Devi R, Kaur T, Kour D, Rana KL, Yadav A, Yadav AN (2020a) Beneficial fungal communities from different habitats and their roles in plant growth promotion and soil health. Microb Biosyst 5:21–47. https://doi.org/10.21608/mb.2020.32802.1016

    Article  Google Scholar 

  • Devi R, Kaur T, Guleria G, Rana K, Kour D, Yadav N et al (2020b) Fungal secondary metabolites and their biotechnological application for human health. In: Rastegari AA, Yadav AN, Yadav N (eds) Trends of microbial biotechnology for sustainable agriculture and biomedicine systems: perspectives for human health. Elsevier, Amsterdam, pp 147–161. https://doi.org/10.1016/B978-0-12-820528-0.00010-7

    Chapter  Google Scholar 

  • DrozĹ‚owska E (2019) The use of enzymatic fungal activity in the food industry-review. World Sci News 116:222–229

    Google Scholar 

  • Dufosse L, Fouillaud M, Caro Y, Mapari SA, Sutthiwong N (2014) Filamentous fungi are large-scale producers of pigments and colorants for the food industry. Curr Opin Biotechnol 26:56–61

    Article  CAS  PubMed  Google Scholar 

  • Ekundayo FO, Olukunle OF, Ekundayo EA (2012) Biodegradation of Bonnylight crude oil by locally isolated fungi from oil contaminated soils in Akure, Ondo state. Malays J Microbiol 8:42–46

    Google Scholar 

  • Ferreira JA, Lennartsson PR, Edebo L, Taherzadeh MJ (2013) Zygomycetes-based biorefinery: present status and future prospects. Bioresour Technol 135:523–532

    Article  CAS  PubMed  Google Scholar 

  • Ferreira JA, Lennartsson PR, Taherzadeh MJ (2015) Production of ethanol and biomass from thin stillage by Neurospora intermedia: a pilot study for process diversification. Eng Life Sci 15:751–759

    Article  CAS  Google Scholar 

  • Ferreira JA, Mahboubi A, Lennartsson PR, Taherzadeh MJ (2016) Waste biorefineries using filamentous ascomycetes fungi: present status and future prospects. Bioresour Technol 215:334–345

    Article  CAS  PubMed  Google Scholar 

  • Ferreira JA, Agnihotri S, Taherzadeh MJ (2019) Waste biorefinery. In: Taherzadeh MJ, Bolton K, Wong J, Pandey A (eds) Sustainable resource recovery and zero waste approaches. Elsevier, pp 35–52

    Google Scholar 

  • Frisvad JC et al (2006) Four psychrotolerant species with high chemical diversity consistently producing cycloaspeptide A, Penicillium jamesonlandense sp. nov., Penicillium ribium sp. nov., Penicillium soppii and Penicillium lanosum. Int J Syst Evol Microbiol 56:1427–1437

    Article  CAS  PubMed  Google Scholar 

  • Frisvad JC, Yilmaz N, Thrane U, Rasmussen KB, Houbraken J, Samson RA (2013) Talaromyces atroroseus, a new species efficiently producing industrially relevant red pigments. PLoS One 8:e84102

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • GarcĂ­a-Delgado C, Yunta F, Eymar E (2015) Bioremediation of multi-polluted soil by spent mushroom (Agaricus bisporus) substrate: polycyclic aromatic hydrocarbons degradation and Pb availability. J Hazard Mater 300:281–288

    Article  PubMed  CAS  Google Scholar 

  • Gautam S, Bundela P, Pandey A, Khan J, Awasthi M, Sarsaiya S (2011) Optimization for the production of cellulase enzyme from municipal solid waste residue by two novel cellulolytic fungi. Biotechnol Res Int 2011:1–8

    Article  CAS  Google Scholar 

  • Gawas-Sakhalkar P, Singh SM (2011) Fungal community associated with Arctic moss, Tetraplodon mimoides and its rhizosphere: bioprospecting for production of industrially useful enzymes. Curr Sci 100:1701–1705

    Google Scholar 

  • Gola D, Dey P, Bhattacharya A, Mishra A, Malik A, Namburath M, Ahammad SZ (2016) Multiple heavy metal removal using an entomopathogenic fungi Beauveria bassiana. Bioresour Technol 218:388–396

    Article  CAS  PubMed  Google Scholar 

  • Gopi V, Upgade A, Soundararajan N (2012) Bioremediation potential of individual and consortium non-adapted fungal strains on Azo dye containing textile effluent. Adv Appl Sci Res 3:303–311

    CAS  Google Scholar 

  • Grujić M, Dojnov B, PotoÄŤnik I, Duduk B, VujÄŤić Z (2015) Spent mushroom compost as substrate for the production of industrially important hydrolytic enzymes by fungi Trichoderma spp. and Aspergillus niger in solid state fermentation. Int Biodeterior Biodegradation 104:290–298

    Article  CAS  Google Scholar 

  • Haddadi M, Aiyelabegan H, Negahdari B (2018) Advanced biotechnology in biorefinery: a new insight into municipal waste management to the production of high-value products. Int J Environ Sci Technol 15:675–686

    Article  CAS  Google Scholar 

  • Hassan A, Pariatamby A, Ahmed A, Auta HS, Hamid FS (2019) Enhanced bioremediation of heavy metal contaminated landfill soil using filamentous fungi consortia: a demonstration of bioaugmentation potential. Water Air Soil Pollut 230:215

    Article  CAS  Google Scholar 

  • Heo YM et al (2018) Investigation of filamentous fungi producing safe, functional water-soluble pigments. Mycobiology 46:269–277

    Article  PubMed  PubMed Central  Google Scholar 

  • Hernández VA, Galleguillos F, Thibaut R, MĂĽller A (2019) Fungal dyes for textile applications: testing of industrial conditions for wool fabrics dyeing. J Text I 110:61–66

    CAS  Google Scholar 

  • Hesham AE-L, Kaur T, Devi R, Kour D, Prasad S, Yadav N et al. (2021) Current Trends in Microbial Biotechnology for Agricultural Sustainability: Conclusion and Future Challenges. In: Yadav AN, Singh J, Singh C, Yadav N (eds) Current Trends in Microbial Biotechnology for Sustainable Agriculture. Springer, Singapore, pp 555–572. https://doi.org/10.1007/978-981-15-6949-4_22

  • Huang L, Zhang B, Gao B, Sun G (2011) Application of fishmeal wastewater as a potential low-cost medium for lipid production by Lipomyces starkeyi HL. Environ Technol 32:1975–1981

    Article  CAS  Google Scholar 

  • Husaini A, Roslan HA, Hii KSY, Ang CH (2008) Biodegradation of aliphatic hydrocarbon by indigenous fungi isolated from used motor oil contaminated sites. World J Microbiol Biotechnol 24:2789–2797

    Article  CAS  Google Scholar 

  • Hyde KD, Xu J, Rapior S, Jeewon R, Lumyong S, Niego AGT et al (2019) The amazing potential of fungi: 50 ways we can exploit fungi industrially. Fungal Divers 97:1–136

    Article  Google Scholar 

  • Izidoro SC, Knob A (2014) Production of xylanases by an Aspergillus niger strain in wastes grain. Acta Sci Biol 36:313–319

    Article  CAS  Google Scholar 

  • Jain KK, Dey TB, Kumar S, Kuhad RC (2015) Production of thermostable hydrolases (cellulases and xylanase) from Thermoascus aurantiacus RCKK: a potential fungus. Bioprocess Biosyst Eng 38:787–796

    Article  CAS  PubMed  Google Scholar 

  • Joshi P, Swarup A, Maheshwari S, Kumar R, Singh N (2011) Bioremediation of heavy metals in liquid media through fungi isolated from contaminated sources. Indian J Microbiol 51:482–487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Juckpech K, Pinyakong O, Rerngsamran P (2012) Degradation of polycyclic aromatic hydrocarbons by newly isolated Curvularia sp. F18, Lentinus sp. S5, and Phanerochaete sp. T20. Sci Asia 38:147–156

    Article  CAS  Google Scholar 

  • Kamala T, Devi SI, Sharma KC, Kennedy K (2015) Phylogeny and taxonomical investigation of Trichoderma spp from Indian region of Indo-Burma biodiversity hot spot region with special reference to Manipur. BioMed Res Int:2015

    Google Scholar 

  • Kataoka R, Takagi K, Sakakibara F (2010) A new endosulfan-degrading fungus, Mortierella species, isolated from a soil contaminated with organochlorine pesticides. J Pestic Sci:1003160118–1003160118

    Google Scholar 

  • Katoch M, Bindu K, Phull S, Verma M (2017) An endophytic Fusarium sp. isolated from Monarda citriodora produces the industrially important plant-like volatile organic compound hexanal. Microbiology 163:840–847

    Article  CAS  PubMed  Google Scholar 

  • Khan AA, Bacha N, Ahmad B, Lutfullah G, Farooq U, Cox RJ (2014) Fungi as chemical industries and genetic engineering for the production of biologically active secondary metabolites. Asian Pac J Trop Biomed 4:859–870

    Article  CAS  Google Scholar 

  • Khokhar I, Mukhtar I, Mushtaq S (2011) Isolation and screening of amylolytic filamentous fungi. J Appl Sci Environ Manag 15:203–206

    CAS  Google Scholar 

  • Kour D, Rana KL, Yadav N, Yadav AN, Singh J, Rastegari AA, Saxena AK (2019) Agriculturally and industrially important fungi: current developments and potential biotechnological applications. In: Yadav AN, Singh S, Mishra S, Gupta A (eds) Recent advancement in white biotechnology through fungi, volume 2: perspective for value-added products and environments. Springer International Publishing, Cham, pp 1–64. https://doi.org/10.1007/978-3-030-14846-1_1

    Chapter  Google Scholar 

  • Kour D, Kaur T, Devi R, Rana KL, Yadav N, Rastegari AA, Yadav AN (2020) Biotechnological applications of beneficial microbiomes for evergreen agriculture and human health. In: Rastegari AA, Yadav AN, Yadav N (eds) Trends of microbial biotechnology for sustainable agriculture and biomedicine systems: perspectives for human health. Elsevier, Amsterdam, pp 255–279. https://doi.org/10.1016/B978-0-12-820528-0.00019-3

    Chapter  Google Scholar 

  • Kour D, Rana KL, Kaur T, Yadav N, Yadav AN, Kumar M et al. (2021) Biodiversity, current developments and potential biotechnological applications of phosphorus-solubilizing and -mobilizing microbes: A review. Pedosphere 31:43–75. https://doi.org/10.1016/S1002-0160(20)60057-1

  • Kumar V, Dwivedi SK (2019) Hexavalent chromium reduction ability and bioremediation potential of Aspergillus flavus CR500 isolated from electroplating wastewater. Chemosphere 237:124567

    Article  CAS  PubMed  Google Scholar 

  • Kumar V, Pandey P, Gupta S, Shukla P (2014) A reviving preliminary evoke on few xylanase producing fungal isolates from different ecological niche. Int J Curr Microbiol Appl Sci 3:501–506

    Google Scholar 

  • Kumar M, Yadav AN, Saxena R, Paul D, Tomar RS (2021) Biodiversity of pesticides degrading microbial communities and their environmental impact. Biocatalysis and Agricultural Biotechnology 31:101883. https://doi.org/10.1016/j.bcab.2020.101883

  • Kurniati E, Arfarita N, Imai T, Higuchi T, Kanno A, Yamamoto K, Sekine M (2014) Potential bioremediation of mercury-contaminated substrate using filamentous fungi isolated from forest soil. J Environ Sci 26:1223–1231

    Article  CAS  Google Scholar 

  • Lal D, Shrivastava D, Verma H, Gardner JJ (2012) Production of tannin acyl hydrolase (EC 3.1. 1.20) from Aspergillus niger isolated from bark of Acacia nilotica. J Microbiol Biotechnol Res 2:566–572

    CAS  Google Scholar 

  • Lanka S, Pydipally M, Latha JNL (2016) Extraction and activity studies of industrially important enzymes from marine fusarium species isolated from Machilipatnam sea water, (ap), India. Euro J Pharm Med Res 3:254–258

    Google Scholar 

  • Le TTM, Hoang ATH, Le TTB, Vo TTB, Van Quyen D, Chu HH (2019) Isolation of endophytic fungi and screening of Huperzine A–producing fungus from Huperzia serrata in Vietnam. Sci Rep 9:1–13

    Google Scholar 

  • Levin L, Melignani E, Ramos AM (2010) Effect of nitrogen sources and vitamins on ligninolytic enzyme production by some white-rot fungi. Dye decolorization by selected culture filtrates. Bioresour Technol 101:4554–4563

    Article  CAS  PubMed  Google Scholar 

  • Ma Y-M, Liang X-A, Kong Y, Jia B (2016) Structural diversity and biological activities of indole diketopiperazine alkaloids from fungi. J Agric Food Chem 64:6659–6671

    Article  CAS  PubMed  Google Scholar 

  • Mahmoud MS, Mostafa MK, Mohamed SA, Sobhy NA, Nasr M (2017) Bioremediation of red azo dye from aqueous solutions by Aspergillus niger strain isolated from textile wastewater. J Environ Chem Eng 5:547–554

    Article  CAS  Google Scholar 

  • Malathi V, Devegowda G (2001) In vitro evaluation of nonstarch polysaccharide digestibility of feed ingredients by enzymes. Poult Sci 80:302–305

    Article  CAS  PubMed  Google Scholar 

  • Malaviya P, Rathore V (2007) Bioremediation of pulp and paper mill effluent by a novel fungal consortium isolated from polluted soil. Bioresour Technol 98:3647–3651

    Article  CAS  PubMed  Google Scholar 

  • Mao J, Guan W (2016) Fungal degradation of polycyclic aromatic hydrocarbons (PAHs) by Scopulariopsis brevicaulis and its application in bioremediation of PAH-contaminated soil. Acta Agric Scand B Soil Plant Sci 66:399–405

    CAS  Google Scholar 

  • Meyer V, Basenko EY, Benz JP, Braus GH, Caddick MX, Csukai M et al (2020) Growing a circular economy with fungal biotechnology: a white paper. Fungal Biol Biotechnol 7:5. https://doi.org/10.1186/s40694-020-00095-z

    Article  PubMed  PubMed Central  Google Scholar 

  • Mishra VK et al (2017) Determination and production of antimicrobial compounds by Aspergillus clavatonanicus strain MJ31, an endophytic fungus from Mirabilis jalapa L. using UPLC-ESI-MS/MS and TD-GC-MS analysis. PLoS One 12:e0186234

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mitra J, Mukherjee PK, Kale SP, Murthy NBK (2001) Bioremediation of DDT in soil by genetically improved strains of soil fungus Fusarium solani. Biodegradation 12:235–245

    Article  CAS  PubMed  Google Scholar 

  • Mohsenzadeh F, Nasseri S, Mesdaghinia A, Nabizadeh R, Zafari D, Khodakaramian G, Chehregani A (2010) Phytoremediation of petroleum-polluted soils: application of Polygonum aviculare and its root-associated (penetrated) fungal strains for bioremediation of petroleum-polluted soils. Ecotoxicol Environ Saf 73:613–619

    Article  CAS  PubMed  Google Scholar 

  • Mouhamadou B, Faure M, Sage L, Marçais J, Souard F, Geremia RA (2013) Potential of autochthonous fungal strains isolated from contaminated soils for degradation of polychlorinated biphenyls. Fungal Biol 117:268–274

    Article  CAS  PubMed  Google Scholar 

  • Mukunda S, Onkarappa R, Prashith K (2012) Isolation and screening of industrially important fungi from the soils of western ghats of Agumbe and Koppa, Karnataka, India. Sci Technol Arts Res J 1:27–32

    Article  Google Scholar 

  • Nandakumar R, Yoshimune K, Wakayama M, Moriguchi M (2003) Microbial glutaminase: biochemistry, molecular approaches and applications in the food industry. J Mol Catal B Enzym 23:87–100

    Article  CAS  Google Scholar 

  • Ojuederie OB, Babalola OO (2017) Microbial and plant-assisted bioremediation of heavy metal polluted environments: a review. Int J Environ Res Public Health 14:1504

    Article  PubMed Central  CAS  Google Scholar 

  • Ominyi Matthias C (2013) Optimization of α-amylase and glucoamylase production from three fungal strains isolated from Abakaliki, Ebonyi State. Euro J Exp Biol 3:26–34

    Google Scholar 

  • Pan F, Su T-J, Cai S-M, Wu W (2017) Fungal endophyte-derived Fritillaria unibracteata var. wabuensis: diversity, antioxidant capacities in vitro and relations to phenolic, flavonoid or saponin compounds. Sci Rep 7:1–14

    CAS  Google Scholar 

  • Pandey A, Höfer R, Taherzadeh M, Nampoothiri M, Larroche C (2015) Industrial biorefineries and white biotechnology. Elsevier

    Google Scholar 

  • Pasha KM, Anuradha P, Rao DS, Bio-marc S (2013) Screening of a pectinolytic fungal strain; Aspergillus foetidus MTCC 10367 for the production of multiple enzymes of industrial importance. Int J Pharma Bio Sci 4:B1205–B1209

    Google Scholar 

  • Patel K, Gadewar M, Tripathi R, Prasad S, Patel DK (2012) A review on medicinal importance, pharmacological activity and bioanalytical aspects of beta-carboline alkaloid “Harmine”. Asian Pac J Trop Biomed 2:660–664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pinheiro EA, Pina JR, Feitosa AO, Carvalho JM, Borges FC, Marinho PS, Marinho AM (2017) Bioprospecting of antimicrobial activity of extracts of endophytic fungi from Bauhinia guianensis. Rev Argent Microbiol 49:3–6

    PubMed  Google Scholar 

  • Pirota RDPB et al (2013) Enhancing xylanases production by a new Amazon Forest strain of Aspergillus oryzae using solid-state fermentation under controlled operation conditions. Ind Crop Prod 45:465–471

    Article  CAS  Google Scholar 

  • Plumb K (2005) Continuous processing in the pharmaceutical industry: changing the mind set. Chem Eng Res Des 83:730–738

    Article  CAS  Google Scholar 

  • Porras-Alfaro A, Bayman P (2011) Hidden fungi, emergent properties: endophytes and microbiomes. Annu Rev Phytopathol 49:291–315

    Article  CAS  PubMed  Google Scholar 

  • Potin O, Rafin C, Veignie E (2004) Bioremediation of an aged polycyclic aromatic hydrocarbons (PAHs)-contaminated soil by filamentous fungi isolated from the soil. Int Biodeter Biodegr 54:45–52

    Article  CAS  Google Scholar 

  • Pozdnyakova NN, Dubrovskaya EV, Makarov OE, Nikitina VE, Turkovskaya OV (2011) Production of ligninolytic enzymes by white-rot fungi during bioremediation of oil-contaminated soil. In: Shukla G, Varma A (eds) Soil enzymology. Springer, Berlin, Heidelberg, pp 363–377. https://doi.org/10.1007/978-3-642-14225-3_20

    Chapter  Google Scholar 

  • Priya MS, Divyashree K, Goswami C, Prabha ML, Babu AS (2013) Bioremediation of textile dyes by white rot fungi isolated from western ghats area. Int J Eng Adv Tech 2:913–918

    Google Scholar 

  • Purnomo AS, Mori T, Kamei I, Nishii T, Kondo R (2010) Application of mushroom waste medium from Pleurotus ostreatus for bioremediation of DDT-contaminated soil. Int Biodeterior Biodegradation 64:397–402

    Article  CAS  Google Scholar 

  • Purnomo AS, Mori T, Takagi K, Kondo R (2011) Bioremediation of DDT contaminated soil using brown-rot fungi. Int Biodeterior Biodegradation 65:691–695

    Article  CAS  Google Scholar 

  • Purnomo AS, Sariwati A, Kamei I (2020) Synergistic interaction of a consortium of the brown-rot fungus Fomitopsis pinicola and the bacterium Ralstonia pickettii for DDT biodegradation. Heliyon 6:e04027

    Article  PubMed  PubMed Central  Google Scholar 

  • Rana KL, Kour D, Sheikh I, Dhiman A, Yadav N, Yadav AN et al. (2019a) Endophytic fungi: biodiversity, ecological significance and potential industrial applications. In: Yadav AN, Mishra S, Singh S, Gupta A (eds) Recent Advancement in White Biotechnology through Fungi: Volume 1: Diversity and Enzymes Perspectives. Springer, Switzerland, pp 1–62

    Google Scholar 

  • Rana KL, Kour D, Sheikh I, Yadav N, Yadav AN, Kumar V et al. (2019b) Biodiversity of endophytic fungi from diverse niches and their biotechnological applications. In: Singh BP (ed) Advances in Endophytic Fungal Research: Present Status and Future Challenges. Springer International Publishing, Cham, pp 105–144, https://doi.org/10.1007/978-3-030-03589-1_6

  • Rani B, Kumar V, Singh J, Bisht S, Teotia P, Sharma S, Kela R (2014) Bioremediation of dyes by fungi isolated from contaminated dye effluent sites for bio-usability. Braz J Microbiol 45:1055–1063

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rao Q, Guo W, Chen X (2015) Identification and characterization of an antifungal protein, AFAFPR9, produced by marine-derived Aspergillus fumigatus R9. J Microbiol Biotechnol 25:620–628

    Article  CAS  PubMed  Google Scholar 

  • Rastegari AA, Yadav AN, Yadav N (2020a) New and future developments in microbial biotechnology and bioengineering: trends of microbial biotechnology for sustainable agriculture and biomedicine systems: diversity and functional perspectives. Elsevier, Amsterdam

    Google Scholar 

  • Rastegari AA, Yadav AN, Yadav N (2020b) New and future developments in microbial biotechnology and bioengineering: trends of microbial biotechnology for sustainable agriculture and biomedicine systems: perspectives for human health. Elsevier, Amsterdam

    Google Scholar 

  • Russo F et al (2019) Bioremediation of dichlorodiphenyltrichloroethane (DDT)-contaminated agricultural soils: potential of two autochthonous saprotrophic fungal strains. Appl Environ Microbiol 85:e01720–e01719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sagar V, Singh D (2011) Biodegradation of lindane pesticide by non white-rots soil fungus Fusarium sp. World J Microbiol Biotechnol 27:1747–1754

    Article  CAS  Google Scholar 

  • Saleem A, Ebrahim MK (2014) Production of amylase by fungi isolated from legume seeds collected in Almadinah Almunawwarah, Saudi Arabia. J Taibah Univ Sci 8:90–97

    Article  Google Scholar 

  • Sarada K (2013) Production and applications of L-Glutaminase using fermentation technology. Asia Pac J Res 1:1

    Google Scholar 

  • Sardar UR, Bhargavi E, Devi I, Bhunia B, Tiwari ON (2018) Advances in exopolysaccharides based bioremediation of heavy metals in soil and water: a critical review. Carbohydr Polym 199:353–364

    Article  PubMed  CAS  Google Scholar 

  • Sariwati A, Purnomo AS, Kamei I (2017) Abilities of co-cultures of brown-rot fungus Fomitopsis pinicola and Bacillus subtilis on biodegradation of DDT. Curr Microbiol 74:1068–1075

    Article  CAS  PubMed  Google Scholar 

  • Saroj S, Kumar K, Pareek N, Prasad R, Singh R (2014) Biodegradation of azo dyes acid red 183, direct blue 15 and direct red 75 by the isolate Penicillium oxalicum SAR-3. Chemosphere 107:240–248

    Article  CAS  PubMed  Google Scholar 

  • Saroj P, Manasa P, Narasimhulu K (2018) Characterization of thermophilic fungi producing extracellular lignocellulolytic enzymes for lignocellulosic hydrolysis under solid-state fermentation. Biores Bioprocess 5:31

    Article  Google Scholar 

  • Schuster A, Schmoll M (2010) Biology and biotechnology of Trichoderma. Appl Microbiol and Biotechnol 87:787–799

    Article  CAS  Google Scholar 

  • Sharma S, Malaviya P (2014) Bioremediation of tannery wastewater by chromium resistant fungal isolate Fusarium chlamydosporium SPFS2-g. Curr World Environ 9:721

    Article  Google Scholar 

  • Sharma S, Malaviya P (2016) Bioremediation of tannery wastewater by chromium resistant novel fungal consortium. Ecol Eng 91:419–425

    Article  Google Scholar 

  • Sharma S, Kour D, Rana KL, Dhiman A, Thakur S, Thakur P et al (2019) Trichoderma: biodiversity, ecological significances, and industrial applications. In: Yadav AN, Mishra S, Singh S, Gupta A (eds) Recent advancement in white biotechnology through fungi: volume 1: diversity and enzymes perspectives. Springer, Cham, pp 85–120. https://doi.org/10.1007/978-3-030-10480-1_3

    Chapter  Google Scholar 

  • Sharma R, Talukdar D, Bhardwaj S, Jaglan S, Kumar R, Kumar R et al (2020) Bioremediation potential of novel fungal species isolated from wastewater for the removal of lead from liquid medium. Environ Technol Innov 18:100757

    Article  Google Scholar 

  • Sharma VP, Singh S, Dhanjal DS, Singh J, Yadav AN (2021) Potential Strategies for Control of Agricultural Occupational Health Hazards. In: Yadav AN, Singh J, Singh C, Yadav N (eds) Current Trends in Microbial Biotechnology for Sustainable Agriculture. Springer, Singapore, pp 387–402. https://doi.org/10.1007/978-981-15-6949-4_16

  • Shazia I, Uzma SG, Talat A (2013) Bioremediation of heavy metals using isolates of filamentous fungus Aspergillus fumigatus collected from polluted soil of Kasur, Pakistan. Int Res J Biol Sci 2:66–73

    Google Scholar 

  • Shekhar S, Sundaramanickam A, Balasubramanian T (2015) Biosurfactant producing microbes and their potential applications: a review. Crit Rev Environ Sci Technol 45:1522–1554

    Article  CAS  Google Scholar 

  • Shrestha P, Ibáñez AB, Bauer S, Glassman SI, Szaro TM, Bruns TD, Taylor JW (2015) Fungi isolated from Miscanthus and sugarcane: biomass conversion, fungal enzymes, and hydrolysis of plant cell wall polymers. Biotechnol Biofuels 8:38

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Silambarasan S, Abraham J (2013) Ecofriendly method for bioremediation of chlorpyrifos from agricultural soil by novel fungus Aspergillus terreus JAS1. Water Air Soil Pollut 224:1369

    Article  CAS  Google Scholar 

  • Silva ĂŤS, dos EDC S, de Menezes CR, de Faria AF, Franciscon E, Grossman M, Durrant LR (2009) Bioremediation of a polyaromatic hydrocarbon contaminated soil by native soil microbiota and bioaugmentation with isolated microbial consortia. Bioresour Technol 100:4669–4675

    Article  CAS  PubMed  Google Scholar 

  • Singh R et al (2015) Aureobasidium pullulans-an industrially important pullulan producing black yeast. Int J Curr Microbiol App Sci 4:605–622

    CAS  Google Scholar 

  • Singh A, Kumar R, Yadav AN, Mishra S, Sachan S, Sachan SG (2020a) Tiny microbes, big yields: microorganisms for enhancing food crop production sustainable development. In: Rastegari AA, Yadav AN, Yadav N (eds) Trends of microbial biotechnology for sustainable agriculture and biomedicine systems: diversity and functional perspectives. Elsevier, Amsterdam, pp 1–15. https://doi.org/10.1016/B978-0-12-820526-6.00001-4

    Chapter  Google Scholar 

  • Singh S, Dhanjal DS, Thotapalli S, Sonali SP, Singh J (2020b) Chapter 19 – importance and recent aspects of fungi-based food ingredients. In: Gehlot P (ed) Singh J. Elsevier, New and Future Developments in Microbial Biotechnology and Bioengineering, pp 245–254

    Google Scholar 

  • Sunitha V, Nirmala Devi D, Srinivas C (2013) Extracellular enzymatic activity of endophytic fungal strains isolated from medicinal plants. World J Agric Sci 9:1–9

    CAS  Google Scholar 

  • Talukdar D et al (2020a) Evaluation of novel indigenous fungal consortium for enhanced bioremediation of heavy metals from contaminated sites. Environ Technol Innov 20:101050

    Article  CAS  Google Scholar 

  • Talukdar D, Sharma R, Jaglan S, Vats R, Kumar R, Mahnashi MH, Umar A (2020b) Identification and characterization of cadmium resistant fungus isolated from contaminated site and its potential for bioremediation. Environ Technol Innov 17:100604

    Article  Google Scholar 

  • Thakur N, Kaur S, Tomar P, Thakur S, Yadav AN (2020) Microbial biopesticides: current status and advancement for sustainable agriculture and environment. In: Rastegari AA, Yadav AN, Yadav N (eds) Trends of microbial biotechnology for sustainable agriculture and biomedicine systems: diversity and functional perspectives. Elsevier, Amsterdam, pp 243–282. https://doi.org/10.1016/B978-0-12-820526-6.00016-6

    Chapter  Google Scholar 

  • Tigini V, Prigione V, Di Toro S, Fava F, Varese GC (2009) Isolation and characterisation of polychlorinated biphenyl (PCB) degrading fungi from a historically contaminated soil. Microbial Cell Fact 8:5

    Article  CAS  Google Scholar 

  • Vahabi K, Mansoori GA, Karimi S (2011) Biosynthesis of silver nanoparticles by fungus Trichoderma reesei (a route for large-scale production of AgNPs). Insci J 1:65–79

    Article  CAS  Google Scholar 

  • Venkatesagowda B, Ponugupaty E, Barbosa AM, Dekker RF (2012) Diversity of plant oil seed-associated fungi isolated from seven oil-bearing seeds and their potential for the production of lipolytic enzymes. World J Microbiol Biotechnol 28:71–80

    Article  CAS  PubMed  Google Scholar 

  • Venkatesagowda B, Ponugupaty E, Barbosa-Dekker AM, Dekker RF (2018) The purification and characterization of lipases from Lasiodiplodia theobromae, and their immobilization and use for biodiesel production from coconut oil. Appl Biochem Biotechnol 185:619–640

    Article  CAS  PubMed  Google Scholar 

  • Wikee S et al (2019) Characterization and dye decolorization potential of two laccases from the marine-derived fungus Pestalotiopsis sp. Int J Mol Sci 20:1864

    Article  CAS  PubMed Central  Google Scholar 

  • Yadav AN (2020) Recent trends in mycological research, volume 1: agricultural and medical perspective. Springer, Switzerland

    Google Scholar 

  • Yadav AN, Mishra S, Kour D, Yadav N, Kumar A (2020a) Agriculturally important fungi for sustainable agriculture

    Google Scholar 

  • Yadav AN, Mishra S, Kour D, Yadav N, Kumar A (2020b) Agriculturally important fungi for sustainable agriculture, volume 1: perspective for diversity and crop productivity. Springer International Publishing, Cham

    Book  Google Scholar 

  • Yadav AN, Mishra S, Kour D, Yadav N, Kumar A (2020c) Agriculturally important fungi for sustainable agriculture, volume 2: functional annotation for crop protection. Springer International Publishing, Cham

    Book  Google Scholar 

  • Yadav AN, Rastegari AA, Yadav N, Gaur R (2020d) Biofuels production – sustainability and advances in microbial bioresources. Springer, Cham

    Google Scholar 

  • Yadav AN (2021) Beneficial plant-microbe interactions for agricultural sustainability. J Appl Biol Biotechnol 9:1–4. https://doi.org/10.7324/JABB.2021.91ed

  • Yang S, Yan Q, Jiang Z, Li L, Tian H, Wang Y (2006) High-level of xylanase production by the thermophilic Paecilomyces themophila J18 on wheat straw in solid-state fermentation. Bioresour Technol 97:1794–1800

    Article  CAS  PubMed  Google Scholar 

  • Zapana-Huarache SV, Romero-Sánchez CK, Gonza APD, Torres-Huaco FD, Rivera AML (2020) Chromium (VI) bioremediation potential of filamentous fungi isolated from Peruvian tannery industry effluents. Braz J Microbiol 51:271–278

    Article  CAS  PubMed  Google Scholar 

  • Zhu D, Wang J, Zeng Q, Zhang Z, Yan R (2010) A novel endophytic Huperzine A–producing fungus, Shiraia sp. Slf14, isolated from Huperzia serrata. J Appl Microbiol 109:1469–1478

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yadav, A.N. et al. (2021). Environmental and Industrial Perspective of Beneficial Fungal Communities: Current Research and Future Challenges. In: Yadav, A.N. (eds) Recent Trends in Mycological Research. Fungal Biology. Springer, Cham. https://doi.org/10.1007/978-3-030-68260-6_18

Download citation

Publish with us

Policies and ethics