Skip to main content

Modelling Cardiac Motion via Spatio-Temporal Graph Convolutional Networks to Boost the Diagnosis of Heart Conditions

  • Conference paper
  • First Online:
Statistical Atlases and Computational Models of the Heart. M&Ms and EMIDEC Challenges (STACOM 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12592))

Abstract

We present a novel spatio-temporal graph convolutional networks (ST-GCN) approach to learn spatio-temporal patterns of left ventricular (LV) motion in cardiac MR cine images for improving the characterization of heart conditions. Specifically, a novel GCN architecture is used, where the sample nodes of endocardial and epicardial contours are connected as a graph to represent the myocardial geometry. We show that the ST-GCN can automatically quantify the spatio-temporal patterns in cine MR that characterise cardiac motion. Experiments are performed on healthy volunteers from the UK Biobank dataset. We compare different strategies for constructing cardiac structure graphs. Experiments show that the proposed methods perform well in estimating endocardial radii and characterising cardiac motion features for regional LV analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    UK BioBank https://www.ukbiobank.ac.uk/.

References

  1. Bai, W., et al.: Automated cardiovascular magnetic resonance image analysis with fully convolutional networks. J. Cardiovasc. Magn. Reson. 20(1), 65 (2018)

    Article  Google Scholar 

  2. Cerqueira, M.D., et al.: Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart: a statement for healthcare professionals from the cardiac imaging committee of the council on clinical cardiology of the American heart association. Circulation 105(4), 539–542 (2002)

    Article  MathSciNet  Google Scholar 

  3. Huang, Y., Bi, H., Li, Z., Mao, T., Wang, Z.: STGAT: modeling spatial-temporal interactions for human trajectory prediction. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 6272–6281 (2019)

    Google Scholar 

  4. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907 (2016)

  5. Li, M., Chen, S., Chen, X., Zhang, Y., Wang, Y., Tian, Q.: Actional-structural graph convolutional networks for skeleton-based action recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3595–3603 (2019)

    Google Scholar 

  6. Lu, P., Qiu, H., Qin, C., Bai, W., Rueckert, D., Noble, J.A.: Going deeper into cardiac motion analysis to model fine spatio-temporal features. In: Papież, B.W., Namburete, A.I.L., Yaqub, M., Noble, J.A. (eds.) MIUA 2020. CCIS, vol. 1248, pp. 294–306. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-52791-4_23

    Chapter  Google Scholar 

  7. Qin, C., et al.: Joint learning of motion estimation and segmentation for cardiac MR image sequences. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11071, pp. 472–480. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00934-2_53

    Chapter  Google Scholar 

  8. Qiu, H., Qin, C., Le Folgoc, L., Hou, B., Schlemper, J., Rueckert, D.: Deep learning for cardiac motion estimation: supervised vs. unsupervised training. In: Pop, M., et al. (eds.) STACOM 2019. LNCS, vol. 12009, pp. 186–194. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-39074-7_20

    Chapter  Google Scholar 

  9. Yan, S., Xiong, Y., Lin, D.: Spatial temporal graph convolutional networks for skeleton-based action recognition. In: Thirty-Second AAAI Conference on Artificial Intelligence (2018)

    Google Scholar 

  10. Zheng, Q., Delingette, H., Ayache, N.: Explainable cardiac pathology classification on cine MRI with motion characterization by semi-supervised learning of apparent flow. Med. Image Anal. 56, 80–95 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by SmartHeart. EPSRC grant EP/P001009/1. This research has been conducted using the UK Biobank Resource under Application Number 40119.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Lu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lu, P., Bai, W., Rueckert, D., Noble, J.A. (2021). Modelling Cardiac Motion via Spatio-Temporal Graph Convolutional Networks to Boost the Diagnosis of Heart Conditions. In: Puyol Anton, E., et al. Statistical Atlases and Computational Models of the Heart. M&Ms and EMIDEC Challenges. STACOM 2020. Lecture Notes in Computer Science(), vol 12592. Springer, Cham. https://doi.org/10.1007/978-3-030-68107-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-68107-4_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-68106-7

  • Online ISBN: 978-3-030-68107-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics