Skip to main content

Measure Anatomical Thickness from Cardiac MRI with Deep Neural Networks

  • Conference paper
  • First Online:
Statistical Atlases and Computational Models of the Heart. M&Ms and EMIDEC Challenges (STACOM 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12592))

  • 965 Accesses

Abstract

Accurate estimation of shape thickness from medical images is crucial in clinical applications. For example, the thickness of myocardium is one of the key to cardiac disease diagnosis. While mathematical models are available to obtain accurate dense thickness estimation, they suffer from heavy computational overhead due to iterative solvers. To this end, we propose novel methods for dense thickness estimation, including a fast solver that estimates thickness from binary annular shapes and an end-to-end network that estimates thickness directly from raw cardiac images. We test the proposed models on three cardiac datasets and one synthetic dataset, achieving impressive results and generalizability on all. Thickness estimation is performed without iterative solvers or manual correction, which is \(100\times \) faster than the mathematical model. We also analyze thickness patterns on different cardiac pathologies with a standard clinical model and the results demonstrate the potential clinical value of our method for thickness based cardiac disease diagnosis.

Q. Huang—This work was carried out during the internship of the author at United Imaging Intelligence, Cambridge, MA 02140.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bernard, O., et al.: Deep learning techniques for automatic MRI cardiac multi-structures segmentation and diagnosis: is the problem solved? IEEE Trans. Med. Imaging 37(11), 2514–2525 (2018)

    Article  Google Scholar 

  2. Hsieh, J.T., Zhao, S., Eismann, S., Mirabella, L., Ermon, S.: Learning neural pde solvers with convergence guarantees. arXiv preprint arXiv:1906.01200 (2019)

  3. Jones, S.E., Buchbinder, B.R., Aharon, I.: Three-dimensional mapping of cortical thickness using Laplace’s equation. Hum. Brain Mapp. 11(1), 12–32 (2000)

    Article  Google Scholar 

  4. Kendall, A.: An Introduction to Numerical Analysis. Wiley, Hoboken (1989)

    MATH  Google Scholar 

  5. Khalifa, F., Beache, G.M., Gimelrfarb, G., Giridharan, G.A., El-Baz, A.: Accurate automatic analysis of cardiac cine images. IEEE Trans. Biomed. Eng. 59(2), 445–455 (2012)

    Article  Google Scholar 

  6. Cerqueira, M.D., et al.: Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart: a statement for healthcare professionals from the cardiac imaging committee of the council on clinical cardiology of the American heart association. Circulation 105(4), 539–542 (2002)

    Google Scholar 

  7. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  8. Sliman, H., Elnakib, A., Beache, G.M., Elmaghraby, A., El-Baz, A.: Assessment of myocardial function from cine cardiac MRI using a novel 4D tracking approach. J. Comput. Sci. Syst. Biol. 7, 169–173 (2014)

    Article  Google Scholar 

  9. William, H.P., Saul, A.T., William, T.V., Brian, P.F.: Numerical Recipes in C: The Art of Scientific Computing. Cambridge University Press, Cambridge (1992)

    MATH  Google Scholar 

  10. Wu, P., Huang, Q., Yi, J., Qu, H., Ye, M., Axel, L., Metaxas, D.: Cardiac MR image sequence segmentation with temporal motion encoding. In: ECCV 2020 Workshop on BioImage Computing (2020)

    Google Scholar 

  11. Xue, W., Brahm, G., Pandey, S., Leung, S., Li, S.: Full left ventricle quantification via deep multitask relationships learning. Med. Image Anal. 43, 54–65 (2018)

    Article  Google Scholar 

  12. Xue, W., Nachum, I.B., Pandey, S., Warrington, J., Leung, S., Li, S.: Direct estimation of regional wall thicknesses via residual recurrent neural network. In: Niethammer, M., et al. (eds.) IPMI 2017. LNCS, vol. 10265, pp. 505–516. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59050-9_40

    Chapter  Google Scholar 

  13. Yang, D., Huang, Q., Axel, L., Metaxas, D.: Multi-component deformable models coupled with 2D–3D U-Net for automated probabilistic segmentation of cardiac walls and blood. In: 2018 IEEE 15th International Symposium on Biomedical Imaging, pp. 479–483 (2018)

    Google Scholar 

  14. Yang, D., Huang, Q., Mikael, K., Al’Aref, S., Axel, L., Metaxas, D.: MRI-based characterization of left ventricle dyssynchrony with correlation to CRT outcomes. In: 2020 IEEE 17th International Symposium on Biomedical Imaging, pp. 1–4 (2020)

    Google Scholar 

  15. Yang, G., Hua, T., Xue, W., Li, S.: Lvquan19, September 2019. https://lvquan19.github.io/

  16. Yezzi, A.J., Prince, J.L.: An Eulerian PDE approach for computing tissue thickness. IEEE Trans. Med. Imaging 22(10), 1332–1339 (2003)

    Article  Google Scholar 

  17. Yu, H., Chen, X., Shi, H., Chen, T., Huang, T.S., Sun, S.: Motion pyramid networks for accurate and efficient cardiac motion estimation. arXiv preprint arXiv:2006.15710 (2020)

  18. Yu, H., et al.: FOAL: fast online adaptive learning for cardiac motion estimation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4313–4323 (2020)

    Google Scholar 

  19. Zhuang, X.: Multivariate mixture model for myocardial segmentation combining multi-source images. IEEE Trans. Pattern Anal. Mach. Intell. 41, 2933–2946 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shanhui Sun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Huang, Q. et al. (2021). Measure Anatomical Thickness from Cardiac MRI with Deep Neural Networks. In: Puyol Anton, E., et al. Statistical Atlases and Computational Models of the Heart. M&Ms and EMIDEC Challenges. STACOM 2020. Lecture Notes in Computer Science(), vol 12592. Springer, Cham. https://doi.org/10.1007/978-3-030-68107-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-68107-4_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-68106-7

  • Online ISBN: 978-3-030-68107-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics