Skip to main content

Solution of Special Problems of Film Condensation

  • Chapter
  • First Online:
Non-equilibrium Evaporation and Condensation Processes

Part of the book series: Mathematical Engineering ((MATHENGIN))

  • 452 Accesses

Abstract

The problem of vapor condensation on a solid surface has been traditionally referred to as a classical problem of two-phase thermo-hydrodynamics. The best-studied case is the condensation of a steady-state vapor on a vertical plate [1, 2] when the hydrodynamics of the laminar flow of a condensate film is determined by the interaction between the gravity forces (the driving force) and the viscous friction on the wall.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

HTC:

Heat transfer coefficient

NCG:

Noncondensable gas

MM:

Mechanistic model

\(A\) :

Relative heat transfer coefficient

\(c_p\) :

Isobaric heat capacity

\(D\) :

Molecular diffusivity

\(h_fg\) :

Heat of phase transition

\(h\) :

Heat transfer coefficient (HTC)

\(K\) :

Phase transformation number

\(k\) :

Thermal conduction

\({\text{Le}}\) :

Lewis number

\({ \Pr }\) :

Prandtl number

p :

Pressure

\({\text{Re}}\) :

Reynolds number

\({\text{St}}\) :

Stanton number

\({\text{St}}_m\) :

Mass Stanton number

\({\text{Sc}}\) :

Schmidt number

T :

Temperature

\(\alpha\) :

Thermal diffusivity

\(\beta\) :

Mass transfer coefficient

\(\delta\) :

Film thickness

\(\xi\) :

Darcy friction factor

\(\phi\) :

Angular coordinate

\(\nu\) :

Kinematic viscosity

\(\rho\) :

Density

\(\psi\) :

NCG influence coefficient

0:

External

\(b\) :

Flow core

\(\delta\) :

State a liquid film surface

\(m\) :

Vapor-Gas mixture

v:

Vapor

\(w\) :

State at wall surface

References

  1. Faghri A, Zhang Y (2006) Transport phenomena in multiphase systems. Academic Press

    Google Scholar 

  2. Fujii T (1991) Theory of laminar film condensation. Springer, New York

    Book  MATH  Google Scholar 

  3. Nußelt W (1916) Die Oberflächenkondensation des Wasserdampfes. VDI-Zeitschrift 60:541–546

    Google Scholar 

  4. Nußelt W (1916) Die Oberflächenkondensation des Wasserdampfes. VDI-Zeitschrift 60:569–575

    Google Scholar 

  5. Kutateladze SS (1963) Fundamentals of heat transfer. Edward Arnold, London

    MATH  Google Scholar 

  6. Labuntsov DA (2000) Physical foundations of power engineering. Selected works, Moscow Power Energetic Univ. (Publ.), Moscow (in Russian)

    Google Scholar 

  7. Kholpanov LP, Shkadov VY (1990) Hydrodynamics of heat and mass exchange with interfaces. Nauka, Moscow (in Russian)

    Google Scholar 

  8. Shekriladze IG, Gomelauri VI (1966) Theoretical study of laminar film condensation of flowing vapor. Int J Heat Mass Transf 9:581–591

    Article  Google Scholar 

  9. Fujii T, Uehara H, Kurata C (1972) Laminar filmwise condensation of flowing vapour on a horizontal cylinder. Int J Heat Mass Transf 15:235–246

    Article  Google Scholar 

  10. Rose JW (1984) Effect of pressure gradient in forced convection film condensation on a horizontal tube. Int J Heat Mass Transf 27(1):39–47

    Article  Google Scholar 

  11. Schlichting H (1974) Boundary layer theory. McGraw-Hill, New York

    MATH  Google Scholar 

  12. Berman LD, Tumanov YA (1962) Flow over a horizontal tube. Therm Eng 10:77–84 (In Russian)

    Google Scholar 

  13. Gaddis ES (1979) Solution of the two-phase boundary-layer equations for laminar film condensation of vapor flowing perpendicular to a horizontal cylinder. Int J Heat Mass Transf 22:371–382

    Article  MATH  Google Scholar 

  14. Fransson JHM, Konieczny P, Alfredsson PH (2004) Flow around porous cylinder subject to continuous suction or blowing. J Fluids Struct 19:1031–1048

    Article  Google Scholar 

  15. Loitsyanskii LG (1966) Mechanics of liquids and gases. Pergamon Press, New York

    MATH  Google Scholar 

  16. Michael AG, Rose JW, Daniels LC (1989) Forced convection condensation on a horizontal tube—experiments with vertical downflow of steam. J Heat Transf 111:792–797

    Article  Google Scholar 

  17. Lee WC, Rose JW (1984) Forced convection film condensation on a horizontal tube with and without non-condensing gases. Int J Heat Mass Transf 27:519–528

    Article  Google Scholar 

  18. Honda H, Zozu S, Uchima B, Fujii T (1986) Effect of vapor velocity on film condensation of R-113 on horizontal tubes in across flow. Int J Heat Mass Transf 29:429–438

    Article  Google Scholar 

  19. Avdeev AA, Zudin YB (2011) Vapor condensation upon transversal flow around a cylinder (limiting heat transfer laws). High Temp 49(4):558–565

    Article  Google Scholar 

  20. Colburn AP, Hougen OA (1934) Design of cooler condensers for mixtures of vapors with noncondensing gases. Ind Eng Chem 26:1178–1182

    Article  Google Scholar 

  21. Chilton TH, Colburn AP (1934) Mass transfer coefficients: predictions from data in heat transfer and fluid friction. Ind Eng Chem 26:1183–1187

    Article  Google Scholar 

  22. Bird RB, Stewart WE, Lightfoot EN (2002) Transport phenomena. Wiley

    Google Scholar 

  23. Whalley PB (1996) Two-phase flow and heat transfer. Oxford University Press

    Google Scholar 

  24. Baehr HD, Stephan K (2006) Heat and mass transfer, 2nd ed. Springer

    Google Scholar 

  25. Sparrow EM, Minkowycz WJ, Saddy M (1967) Forced convection condensation in presence of noncondensables and interfacial resistance. Int J Heat Mass Transf 10:1829–1845

    Article  Google Scholar 

  26. Felicione FS, Seban RA (1973) Laminar film condensation of a vapour containing a soluble, noncondensing gas. Int J Heat Mass Transf 16:1601–1610

    Article  Google Scholar 

  27. Prosperetti A (1979) Boundary conditions at a liquid-vapour interface. Meccanica 34–47

    Google Scholar 

  28. Siddique M, Golay MW, Kazimi MS (1993) Local heat transfer coefficients for forced-convection condensation of steam in a vertical tube in the presence of a noncondensable gas. Nucl Technol 102:386–402

    Article  Google Scholar 

  29. Hassan YA, Banerjee S (1996) Implementation of a non-condensable model in RELAP5/MOD3. Nucl Eng Des 162:281–300

    Article  Google Scholar 

  30. Yao GF, Ghiaasiaan SM, Eghbali DA (1996) Semi-implicit modelling of condensation in the presence of non-condensables in the RELAP5/MOD3 computer code. Nucl Eng Des 166:277–291

    Article  Google Scholar 

  31. Peterson PF (1996) Theoretical basis for the Uchida correlation for condensation in reactor containments. Nucl Eng Des 162:301–306

    Article  Google Scholar 

  32. No HC, Park HS (2002) Non-iterative condensation modelling for steam condensation with non-condensable gas in a vertical tube. Int J Heat Mass Transf 45:845–854

    Article  MATH  Google Scholar 

  33. Siow EC, Ormiston SJ, Soliman HM (2002) Fully coupled solution of a twophase model for laminar film conensation of vapour-gas mixtures in horizontal tubes. Int J Heat Mass Transf 45:3689–3702

    Article  MATH  Google Scholar 

  34. Maheshwari NK, Saha D, Sinha RK, Aritomi M (2004) Investigation on condensation in presence of a noncondensable gas for a wide range of Reynolds number. Nucl Eng Des 227:219–238

    Article  Google Scholar 

  35. Siow EC, Ormiston SJ, Solliman HM (2004) A two-phase model for laminar film condensation from steam-air mixtures in vertical parallel-plate channels. Heat Mass Transf 40:365–375

    Article  Google Scholar 

  36. Martin-Valdepenas JM, Jimenez MA, Martin-Fuertes F, Fernandez-Benitez JA (2005) Comparison of film condensation models in presence of noncondensable gases implemented in CFD code. Heat Mass Transfer 41:961–976

    Google Scholar 

  37. Stephan K (2006) Interface temperature and heat transfer in forced convection laminar film condensation of binary mixtures. Int J Heat Mass Transf 49:805–809

    Article  MATH  Google Scholar 

  38. Oh S, Revankar ST (2006) Experimental and theoretical investigation of film condensation with noncondensable gas. Int J Heat Mass Transf 49:2523–2534

    Article  Google Scholar 

  39. Stevanovic VD, Stosic ZV, Stoll U (2006) Three-dimensional numerical simulation of non-condensables accumulation induced by steam condensation in a non-vented pipeline. Int J Heat Mass Transf 49:2420–2436

    Article  MATH  Google Scholar 

  40. Siow EC, Ormiston SJ, Soliman HM (2007) Two-phase modelling of laminar film condensation from vapour-gas mixtures in declining parallel-plate channels. Int J Therm Sci 46:458–466

    Article  Google Scholar 

  41. Li JD (2013) CFD simulation of water vapour condensation in the presence of non-condensable gas in vertical cylindrical condensers. Int J Heat Mass Transf 57(2):708–721

    Article  Google Scholar 

  42. Gorpinyak MS, Solodov AP (2019) Vapor–gas mixture condensation in tubes. Therm Eng 66:388–396

    Article  Google Scholar 

  43. Jensen MK (1988) Condensation with noncondensables and in multicomponent mixtures. In: Shah RK, Subbarao EC, Mashelkar RA (eds) Heat transfer equipment design. Hemisphere Publishing Corp., pp 497–512

    Google Scholar 

  44. Colburn AP, Drew TB (1937) The condensation of mixed vapors. Trans AIChE 33:197–215

    Google Scholar 

  45. Mitrovic J, Gneiting R (1996) Kondensation von Dampfgemischen - Teil 1. Forsch Ingenieurwes 62:1–10

    Article  Google Scholar 

  46. Mitrovic J, Gneiting R (1996) Kondensation von Dampfgemischen - Teil 2. Forsch Ingenieurwes 62:33–42

    Article  Google Scholar 

  47. Fullarton D, Schlünder E-U (2006) Jb: Filmkondensation von binären Gemischen mit und ohne Inertgas. VDI Wärmeatlas. 10. Springer, Berlin, Heidelberg, Kap. Jb: 1029–1040

    Google Scholar 

  48. Ackermann G (1937) Heat transfer and molecular mass transfer in the same field of high temperatures and large partial pressure differences, Ver. Deutsch, Ing. Forschungsheft 8(382):1–10

    Google Scholar 

  49. Krishna R, Panchal CB, Webb DR, Coward I (1976) An Ackermann-Colburn and Drew type analysis for condensation of multicomponent mixtures. Lett Heat Mass Transf 3:163–172

    Article  Google Scholar 

  50. Cengel YA, Turner RH (2004) Fundamentals of thermal-fluid sciences. McGraw-Hill, Boston

    Google Scholar 

  51. Kutateladze SS (1961) Boiling heat transfer. Int J Heat Mass Transf 4(1):31–45

    Article  Google Scholar 

  52. Karnaukhov E, Ustinov VS, Ganzhinov AM, Zudin YB, Lukashenko ML (2016) Comparative analysis of computational techniques taking into account the influence of noncondensing gases on vapor condensation. High Temp 54:731–736

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuri B. Zudin .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zudin, Y.B. (2021). Solution of Special Problems of Film Condensation. In: Non-equilibrium Evaporation and Condensation Processes. Mathematical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-67553-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-67553-0_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-67552-3

  • Online ISBN: 978-3-030-67553-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics