Skip to main content

Empirical Characterization of Network Traffic for Reliable Communication in IoT Devices

  • Chapter
  • First Online:
Security in Cyber-Physical Systems

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 339))

Abstract

The massive growth in the popularity of Internet of Things (IoT) and hence expansion in the number of IoT devices has led to network control issues. The heterogeneity observed in the generated data from each device has further contributed to latency delays and network traffic concerns. An integral part of current network research encompasses the monitoring of network activities, device identification, and secure exchange of information between different devices. The recognition and administration of these persistently increasing IoT devices have posed major challenges in various fields of their application, like Cyber-Physical Systems (CPSs). Hence, the management of network traffic flow between these devices has become a concerning issue. The prolonged inconsistency in cybersecurity systems and constrained computational capabilities have further made IoT devices more vulnerable to adversarial threats. To this end, the preservation and administration of network activities become crucial to manage. In this chapter, we address the network traffic administration issue for different IoT devices. We focus on the efficient characterization of inter-arrival rates of data generated from IoT devices for packet-level and flow-level analysis. Thus, making identification and management of IoT devices exceedingly significant for securing stable functioning of network activities. We also discuss some influential works conjectured to IoT devices and network analysis. The empirical results obtained from real-world network flows have been reported to provide a precise understanding of our observations. Finally, the strengths and weaknesses of some state-of-the-art technologies are discussed along with relevant future scopes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Roux, J., et al.: Toward an intrusion detection approach for IoT based on radio communications profiling. In: 2017 13th European Dependable Computing Conference (EDCC). IEEE (2017)

    Google Scholar 

  2. Pammi, A.A.: Threats, countermeasures, and research trends for BLE-based IoT devices. Dissertation, Arizona State University (2017)

    Google Scholar 

  3. Miettinen, M., et al.: IoT sentinel demo: automated device-type identification for security enforcement in IoT. In: 2017 IEEE 37th International Conference on Distributed Computing Systems (ICDCS). IEEE (2017)

    Google Scholar 

  4. Lopez-Martin, M., et al.: Network traffic classifier with convolutional and recurrent neural networks for Internet of Things. IEEE Access 5, 18042-18050

    Google Scholar 

  5. Cisco, I.O.S.: NetFlow, Introduction to Cisco IOS NetFlow-a technical overview, May 2012 (2007), http://www.cisco.com/c/en/us/products/collateral/ios-nx-os-software/iosnetflow, 30 Apr 2014

  6. Nguyen, T.M.C., Hoang, D.B., Chaczko, Z.: Can SDN technology be transported to software-defined WSN/IoT? In: 2016 IEEE International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData), pp. 234-239. IEEE (2016)

    Google Scholar 

  7. Thupae, R., Isong, B., Gasela, N., Abu-Mahfouz, A.M.: Machine learning techniques for traffic identification and classifiacation in SDWSN: A survey. In: IECON 2018-44th Annual Conference of the IEEE Industrial Electronics Society, pp. 4645–4650. IEEE (2018)

    Google Scholar 

  8. Guo, H., Heidemann, J.: Detecting IoT devices in the Internet (extended). USC/ISI Technical Report ISI-TR-726, July 2018

    Google Scholar 

  9. Lu, W., Xue, L.: A heuristic-based co-clustering algorithm for the internet traffic classification. In: 2014 28th International Conference on Advanced Information Networking and Applications Workshops, pp. 49–54. IEEE, May 2014

    Google Scholar 

  10. Miettinen, M., Marchal, S., Hafeez, I., Asokan, N., Sadeghi, A.R., Tarkoma, S.: IoT SENTINEL: automated device-type identification for security enforcement in IoT. In: 2017 IEEE 37th International Conference on Distributed Computing Systems (ICDCS), pp. 2177–2184. IEEE, June 2017

    Google Scholar 

  11. Taylor, V.F., Spolaor, R., Conti, M., Martinovic, I.: Robust smartphone app identification via encrypted network traffic analysis. IEEE Trans. Inform. Forensics Secur 13(1), 63–78 (2017)

    Article  Google Scholar 

  12. Shafiq, M., Yu, X., Laghari, A.A., Yao, L., Karn, N.K., Abdessamia, F.: Network traffic classification techniques and comparative analysis using machine learning algorithms. In: 2016 2nd IEEE International Conference on Computer and Communications (ICCC), pp. 2451–2455. IEEE, October 2016

    Google Scholar 

  13. Chen, Z., Yan, Q., Han, H., Wang, S., Peng, L., Wang, L., Yang, B.: Machine learning based mobile malware detection using highly imbalanced network traffic. Inform. Sci. 433, 346–364 (2018)

    Article  Google Scholar 

  14. Wang, S., Chen, Z., Yan, Q., Yang, B., Peng, L., Jia, Z.: A mobile malware detection method using behavior features in network traffic. J. Netw. Comput. Appl. 133, 15–25 (2019)

    Article  Google Scholar 

  15. Liu, Z., Wang, R., Japkowicz, N., Cai, Y., Tang, D., Cai, X.: Mobile app traffic flow feature extraction and selection for improving classification robustness. J. Netw. Comput. Appl. 125, 190–208 (2019)

    Article  Google Scholar 

  16. Wu, Z., Dong, Y.N., Wei, H.L., Tian, W.: Consistency measure based simultaneous feature selection and instance purification for multimedia traffic classification. Comput. Netw. 107190, (2020)

    Google Scholar 

  17. Bull, P., Austin, R., Popov, E., Sharma, M., Watson, R.: Flow based security for IoT devices using an SDN gateway. In: 2016 IEEE 4th International Conference on Future Internet of Things and Cloud (FiCloud), pp. 157–163. IEEE, August 2016

    Google Scholar 

  18. Satasiya, D.: Analysis of software defined network firewall (SDF). In: 2016 International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET), pp. 228–231. IEEE, March 2016

    Google Scholar 

  19. Shu, Z., Wan, J., Lin, J., Wang, S., Li, D., Rho, S., Yang, C.: Traffic engineering in software-defined networking: measurement and management. IEEE Access 4, 3246–3256 (2016)

    Article  Google Scholar 

  20. Kokila, R.T., Selvi, S.T., Govindarajan, K.: DDoS detection and analysis in SDN-based environment using support vector machine classifier. In: 2014 Sixth International Conference on Advanced Computing (ICoAC), pp. 205–210. IEEE, December 2014

    Google Scholar 

  21. Macedo, R., de Castro, R., Santos, A., Ghamri-Doudane, Y., Nogueira, M.: Self-organized SDN controller cluster conformations against DDoS attacks effects. In: 2016 IEEE Global Communications Conference (GLOBECOM), pp. 1–6. IEEE, December 2016

    Google Scholar 

  22. Jiang, D., Huo, L., Li, Y.: Fine-granularity inference and estimations to network traffic for SDN. PloS One 13(5) (2018)

    Google Scholar 

  23. Catarinucci, L., De Donno, D., Mainetti, L., Palano, L., Patrono, L., Stefanizzi, M.L., Tarricone, L.: An IoT-aware architecture for smart healthcare systems. IEEE Internet of Things J. 2(6), 515–526 (2015)

    Article  Google Scholar 

  24. Kaur, N., Sood, S.K.: Cognitive decision making in smart industry. Comput. Indus. 74, 151–161 (2015)

    Article  Google Scholar 

  25. Qi, R., Feng, C., Liu, Z., Mrad, N.: Blockchain-powered internet of things, e-governance and e-democracy. In: E-Democracy for Smart Cities, pp. 509–520. Springer, Singapore (2017)

    Google Scholar 

  26. Bebortta, S., Singh, A.K., Mohanty, S., Senapati, D.: Characterization of range for smart home sensors using Tsallis entropy framework. In: Advanced Computing and Intelligent Engineering, pp. 265–276. Springer, Singapore (2020)

    Google Scholar 

  27. Bebortta, S., Panda, M., Panda, S.: Classification of pathological disorders in children using random forest algorithm. In: 2020 International Conference on Emerging Trends in Information Technology and Engineering (ic-ETITE), pp. 1–6. IEEE, February 2020

    Google Scholar 

  28. Bebortta, S., Rajput, N.K., Pati, B., Senapati, D.: A real-time smart waste management based on cognitive IoT framework. In: Advances in Electrical and Computer Technologies, pp. 407–414. Springer, Singapore (2020)

    Google Scholar 

  29. Munz, G., Carle, G.: Distributed network analysis using TOPAS and wireshark. In: NOMS Workshops 2008-IEEE Network Operations and Management Symposium Workshops, pp. 161–164. IEEE, April 2008

    Google Scholar 

  30. Al-Shaer, E., Wei, J., Hamlen, K. W., Wang, C.: HONEYSCOPE: IoT device protection with deceptive network views. In: Autonomous Cyber Deception, pp. 167–181. Springer, Cham (2019)

    Google Scholar 

  31. Hafeez, I., Ding, A.Y., Antikainen, M., Tarkoma, S.: Real-Time IoT device activity detection in edge networks. In International Conference on Network and System Security, pp. 221–236. Springer, Cham (2018)

    Google Scholar 

  32. Meidan, Y., Bohadana, M., Shabtai, A., Guarnizo, J. D., Ochoa, M., Tippenhauer, N.O., Elovici, Y.: ProfilIoT: a machine learning approach for IoT device identification based on network traffic analysis. In: Proceedings of the symposium on applied computing, pp. 506–509, April 2017

    Google Scholar 

  33. Kim, M.S., Won, Y.J., Hong, J.W.: Characteristic analysis of internet traffic from the perspective of flows. Comput. Commun. 29(10), 1639–1652 (2006)

    Article  Google Scholar 

  34. Nespoli, P., Useche Pelaez, D., Daz Lpez, D., Gmez Mrmol, F.: COSMOS: collaborative, seamless and adaptive sentinel for the Internet of Things. Sensors 19(7), 1492 (2019)

    Article  Google Scholar 

  35. Hajji, H.: Statistical analysis of network traffic for adaptive faults detection. IEEE Trans Neural Netw. 16(5), 1053–1063 (2005)

    Article  Google Scholar 

  36. Celenk, M., Conley, T., Willis, J., Graham, J.: Predictive network anomaly detection and visualization. IEEE Trans. Inform. Forensics Secur. 5(2), 288–299 (2010)

    Article  Google Scholar 

  37. Djidjev, H., Sandine, G., Storlie, C., Vander Wiel, S.: Graph based statistical analysis of network traffic. In: Proceedings of the Ninth Workshop on Mining and Learning with Graphs, August 2011

    Google Scholar 

  38. Senapati, D.: Generation of cubic power-law for high frequency intra-day returns: maximum Tsallis entropy framework. Digital Signal Process. 48, 276–284 (2016)

    Article  MathSciNet  Google Scholar 

  39. Bebortta, S., Senapati, D., Rajput, N.K., Singh, A.K., Rathi, V.K., Pandey, H.M., ... Tiwari, P.: Evidence of power-law behavior in cognitive IoT applications. Neural Comput. Appl. 1–13 (2020)

    Google Scholar 

  40. Mukherjee, T., Singh, A.K., Senapati, D.: Performance evaluation of wireless communication systems over Weibull/q-Lognormal shadowed fading using Tsallis entropy framework. Wirel. Person. Commun. 106(2), 789–803 (2019)

    Article  Google Scholar 

  41. D’Alconzo, A., Coluccia, A., Ricciato, F., Romirer-Maierhofer, P.: A distribution-based approach to anomaly detection and application to 3G mobile traffic. In: GLOBECOM 2009—2009 IEEE Global Telecommunications Conference, pp. 1–8. IEEE, November 2009

    Google Scholar 

  42. Hron, M.: The Internet of Thing: How a single coffee makers vulnerabilities symbolize a world of IoT risks, June 2019. https://blog.avast.com/avast-hacked-a-smart-coffee-maker

  43. Chen, L., Heinzelman, W.B.: QoS-aware routing based on bandwidth estimation for mobile ad hoc networks. IEEE J. Sel. Areas Commun. 23(3), 561–572 (2005)

    Article  Google Scholar 

  44. Badr, M., Jerger, N.E.: SynFull: Synthetic traffic models capturing cache coherent behaviour. ACM SIGARCH Comput. Architect. News 42(3), 109–120 (2014)

    Article  Google Scholar 

  45. Yoshigoe, K., Dai, W., Abramson, M., Jacobs, A.: Overcoming invasion of privacy in smart home environment with synthetic packet injection. In: 2015 TRON Symposium (TRONSHOW), pp. 1–7. IEEE, December 2015

    Google Scholar 

  46. Estevez-Tapiador, J.M., Garca-Teodoro, P., Daz-Verdejo, J.E:. Detection of web-based attacks through Markovian protocol parsing. In: 10th IEEE Symposium on Computers and Communications (ISCC’05), pp. 457–462. IEEE, June 2005

    Google Scholar 

  47. Wang, J.H., Chiu, D.M., Lui, J.C.: A gametheoretic analysis of the implications of overlay network traffic on ISP peering. Comput. Netw. 52(15), 2961–2974 (2008)

    Article  Google Scholar 

  48. Ceron, J.M., Steding-Jessen, K., Hoepers, C., Granville, L.Z., Margi, C.B.: Improving IoT Botnet investigation using an adaptive network layer. Sensors 19(3), 727 (2019)

    Article  Google Scholar 

  49. Sivanathan, A., Gharakheili, H.H., Loi, F., Radford, A., Wijenayake, C., Vishwanath, A., Sivaraman, V.: Classifying IoT devices in smart environments using network traffic characteristics. IEEE Trans. Mob. Comput. 18(8), 1745–1759 (2018)

    Article  Google Scholar 

  50. Franois, J., Wang, S., Engel, T. BotTrack: tracking botnets using NetFlow and PageRank. In: International Conference on Research in Networking, pp. 1–14. Springer, Berlin, Heidelberg, May 2011

    Google Scholar 

  51. Pour, M.S., Mangino, A., Friday, K., Rathbun, M., Bou-Harb, E., Iqbal, F., Ghani, N.: On data-driven curation, learning, and analysis for inferring evolving internet-of-Things (IoT) botnets in the wild. Comput. Secur. 91, 101707 (2020)

    Article  Google Scholar 

  52. Yousefi, S., Derakhshan, F., Karimipour, H.: Applications of big data analytics and machine learning in the Internet of Things. In: Handbook of Big Data Privacy, pp. 77–108. Springer, Cham (2020)

    Google Scholar 

  53. Tuan, T.A., Long, H.V., Kumar, R., Priyadarshini, I., Son, N.T.K.: Performance evaluation of Botnet DDoS attack detection using machine learning. Evol. Intell. 1–12 (2019)

    Google Scholar 

  54. DAlconzo, A., Drago, I., Morichetta, A., Mellia, M., Casas, P.: A survey on big data for network traffic monitoring and analysis. IEEE Trans. Netw. Serv. Manag. 16(3), 800–813 (2019)

    Google Scholar 

  55. David, J., Thomas, C.: Efficient DDoS flood attack detection using dynamic thresholding on flow-based network traffic. Comput. Secur. 82, 284–295 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dilip Senapati .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bebortta, S., Senapati, D. (2021). Empirical Characterization of Network Traffic for Reliable Communication in IoT Devices. In: Awad, A.I., Furnell, S., Paprzycki, M., Sharma, S.K. (eds) Security in Cyber-Physical Systems. Studies in Systems, Decision and Control, vol 339. Springer, Cham. https://doi.org/10.1007/978-3-030-67361-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-67361-1_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-67360-4

  • Online ISBN: 978-3-030-67361-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics