Skip to main content

Trade Selection with Supervised Learning and Optimal Coordinate Ascent (OCA)

  • Conference paper
  • First Online:
Mining Data for Financial Applications (MIDAS 2020)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12591))

Included in the following conference series:

Abstract

Can we dynamically extract some information and strong relationship between some financial features in order to select some financial trades over time? Despite the advent of representation learning and end-to-end approaches, mainly through deep learning, feature selection remains a key point in many machine learning scenarios. This paper introduces a new theoretically motivated method for feature selection. The approach that fits within the family of embedded methods, casts the feature selection conundrum as a coordinate ascent optimization with variables dependencies materialized by block variables. Thanks to a limited number of iterations, it proves efficiency for gradient boosting methods, implemented with XGBoost. In case of convex and smooth functions, we are able to prove that the convergence rate is polynomial in terms of the dimension of the full features set. We provide comparisons with state of the art methods, Recursive Feature Elimination and Binary Coordinate Ascent and show that this method is competitive when selecting some financial trades.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Almuallim, H., Dietterich, T.G.: Learning Boolean concepts in the presence of many irrelevant features. Artif. Intell. 69, 279–305 (1994)

    Article  MathSciNet  Google Scholar 

  2. Alvarez-Melis, D., Jaakkola, T.S.: On the robustness of interpretability methods. CoRR (2018). http://arxiv.org/abs/1806.08049

  3. Bach, F.R.: Exploring large feature spaces with hierarchical multiple kernel learning. In: Koller, D., Schuurmans, D., Bengio, Y., Bottou, L. (eds.) Advances in Neural Information Processing Systems 21, pp. 105–112 (2009)

    Google Scholar 

  4. Beck, A., Tetruashvili, L.: On the convergence of block coordinate descent type methods. SIAM J. Optim. 23(4), 2037–2060 (2013)

    Article  MathSciNet  Google Scholar 

  5. Blum, A.L., Langley, P.: Selection of relevant features and examples in machine learning. Artif. Intell. 97(1–2), 245–271 (1997)

    Article  MathSciNet  Google Scholar 

  6. Chaboud, A.P., Chiquoine, B., Hjalmarsson, E., Vega, C.: Rise of the machines: algorithmic trading in the foreign exchange market. J. Finan. 69(5), 2045–2084 (2015)

    Article  Google Scholar 

  7. Chan, E.: Algorithmic Trading: Winning Strategies and Their Rationale, 1st edn. Wiley Publishing, Hoboken (2013)

    Google Scholar 

  8. Chen, T., Guestrin, C.: XGBoost: a scalable tree boosting system. CoRR abs/1603.02754 (2016)

    Google Scholar 

  9. Diakonikolas, J., Orecchia, L.: Alternating randomized block coordinate descent. In: Proceedings of the 35th International Conference on Machine Learning. Proceedings of Machine Learning Research, PMLR, 10–15 July 2018, Stockholmsmässan, Stockholm, Sweden (2018)

    Google Scholar 

  10. Fung, S.P.Y.: Optimal online two-way trading with bounded number of transactions. CoRR (2017)

    Google Scholar 

  11. Gaudel, R., Sebag, M.: Feature Selection as a one-player game. In: International Conference on Machine Learning, Haifa, Israel, pp. 359–366, June 2010. https://hal.inria.fr/inria-00484049

  12. Di Graziano, G.(D.B.A.): Optimal trading stops and algorithmic trading. SSRN (2014). https://ssrn.com/abstract=2381830

  13. Goldstein, M., Viljoen, T., Westerholm, P.J., Zheng, H.: Algorithmic trading, liquidity, and price discovery: an intraday analysis of the SPI 200 futures. Fin. Rev. 49(2), 245–270 (2014)

    Article  Google Scholar 

  14. Guyon, I., Elisseeff, A.: An introduction to variable and feature selection. J. Mach. Learn. Res. 3, 1157–1182 (2003)

    MATH  Google Scholar 

  15. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning. SSS. Springer, New York (2009). https://doi.org/10.1007/978-0-387-84858-7

    Book  MATH  Google Scholar 

  16. Kira, K., Rendell, L.A.: A practical approach to feature selection. In: Proceedings of the Ninth International Workshop on Machine Learning. ML92, San Francisco, CA, USA (1992)

    Google Scholar 

  17. Kirilenko, A., Kyle, A.S., Samadi, M., Tuzun, T.: The flash crash: high-frequency trading in an electronic market. J. Finan. 72, 967–998 (2017)

    Article  Google Scholar 

  18. Kohavi, R., John, G.H.: Wrappers for feature subset selection. Artif. Intell. 97(1), 273–324 (1997)

    Article  Google Scholar 

  19. Koller, D., Sahami, M.: Toward optimal feature selection. In: Proceedings of the Thirteenth International Conference on International Conference on Machine Learning, pp. 284–292. ICML 1996, San Francisco, CA, USA. Morgan Kaufmann Publishers Inc., Burlington (1996)

    Google Scholar 

  20. Labadie, M., Lehalle, C.A.: Optimal algorithmic trading and market microstructure. Working papers (2010)

    Google Scholar 

  21. Mangal, A., Holm, E.A.: A comparative study of feature selection methods for stress hotspot classification in materials. ArXiv e-prints, April 2018

    Google Scholar 

  22. Mitra, P., Murthy, C.A., Pal, S.K.: Unsupervised feature selection using feature similarity. IEEE Trans. Pattern Anal. Mach. Intell. 24(3), 301–312 (2002)

    Article  Google Scholar 

  23. Nesterov, Y.: Efficiency of coordinate descent methods on huge-scale optimization problems. SIAM J. Optim. 22(2), 341–362 (2012)

    Article  MathSciNet  Google Scholar 

  24. Ng, A.Y.: Feature selection, l1 vs. l2 regularization, and rotational invariance. In: ICML 2004 (2004)

    Google Scholar 

  25. Staniak, M., Biecek, P.: Explanations of model predictions with live and breakdown packages. R J. 10, 395 (2018)

    Google Scholar 

  26. Tibshirani, R.: Regression shrinkage and selection via the Lasso. J. Roy. Stat. Soc. B 58, 267–288 (1994)

    MathSciNet  MATH  Google Scholar 

  27. Tuv, E., Borisov, A., Runger, G., Torkkola, K.: Feature selection with ensembles, artificial variables, and redundancy elimination. J. Mach. Learn. Res. 10, 1341–1366 (2009)

    MathSciNet  MATH  Google Scholar 

  28. Vezeris, D., Kyrgos, T., Schinas, C.T.P., Loss, S.: Trading strategies comparison in combination with an MACD trading system. J. Risk Fin. Manage. 11, 56 (2018)

    Google Scholar 

  29. Wright: Coordinate descent algorithms. Math. Program. 151(1), 3–34 (2015)

    Google Scholar 

  30. Zarshenas, A., Suzuki, K.: Binary coordinate ascent: an efficient optimization technique for feature subset selection for machine learning. Knowl.-Based Syst. 110, 191–201 (2016)

    Article  Google Scholar 

  31. Zhang, T.: Adaptive forward-backward greedy algorithm for sparse learning with linear models. Curran Associates, Inc. (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to David Saltiel , Eric Benhamou , Rida Laraki or Jamal Atif .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Saltiel, D., Benhamou, E., Laraki, R., Atif, J. (2021). Trade Selection with Supervised Learning and Optimal Coordinate Ascent (OCA). In: Bitetta, V., Bordino, I., Ferretti, A., Gullo, F., Ponti, G., Severini, L. (eds) Mining Data for Financial Applications. MIDAS 2020. Lecture Notes in Computer Science(), vol 12591. Springer, Cham. https://doi.org/10.1007/978-3-030-66981-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-66981-2_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-66980-5

  • Online ISBN: 978-3-030-66981-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics