Skip to main content

Breeding Strategies of Garden Pea (Pisum sativum L.)

  • Chapter
  • First Online:
Advances in Plant Breeding Strategies: Vegetable Crops

Abstract

Garden pea (Pisum sativum L.), a member of the Fabaceae family, is one of the most important self-pollinating legume crops. Globally, the pea is an economic crop, utilized as food, feed and industrial uses. Garden pea is an annual winter-season crop grown around the world from winter to early summer depending on the country. Gene banks have conserved a large genetic resource collection of pea germplasm. Pisum harbors significant diversity based on biological status, geographical regions and morpho-agronomic traits. Introgression of novel alleles through crossing between various pea genetic resources, e.g. modern varieties with locally adapted varieties, enhances genetic diversity and preselection for traits of interest, which is required to ensure meaningful natural variation at the phenotypic level. Improving pea for biotic and abiotic stress tolerance traits, quality traits and yield attributes are the main objectives of breeders and geneticists. These can be achieved with genomics tools to augment traditional breeding programs. In this chapter, we will provide an overview of the origin of the pea, distribution, genetic resources, conservation, cultivation practices, recent developments in biotechnology and molecular genetics to improve traditional breeding methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abbo S, Gopher A, Lev-Yadun S (2017) The domestication of crop plants. In: Murray BG, Denis JM (eds) Encyclopedia of applied plant sciences, 2nd edn. Academic, Oxford, pp 50–54

    Chapter  Google Scholar 

  • Abdel-Hamid AME (2000) Some physiological and cytological studies on the effect of ions of some heavy metals on Pisum sativum plant. MSc thesis, Ain Shams University, Cairo, Egypt

    Google Scholar 

  • Aburjai T, Natsheh FM (2003) Plants used in cosmetics, phytotherapy research. Phytother Res 17:987–1000. https://doi.org/10.1002/ptr.1363

    Article  PubMed  Google Scholar 

  • Acquaah G (2012) Principles of plant genetics and breeding, 2nd edn. Wiley, Chichester. https://doi.org/10.1002/9781118313718

    Book  Google Scholar 

  • Adsule RN, Kadam SS (1989) Proteins. In: Salunkhe DK, Kadam SS (eds) Handbook of world food legumes, nutritional chemistry, processing technology and utilization, vol II. CRC Press, Boca Raton, pp 75–97

    Google Scholar 

  • Ahloowalia B, Maluszynski M, Nichterlein K (2004) Global impact of mutation derived varieties. Euphytica 135(2):187–204

    Article  Google Scholar 

  • Aissani N, Anouar A, Souhail M, Hichem S (2019) Baker’s yeast separation effluent effect on pea (Pisum Sativum) germination and growth. Int J Biotechnol Bioeng 5:33–38

    Google Scholar 

  • Ali Y, Coyne CJ, Grusak MA et al (2018) Genome-wide SNP identification, linkage map construction and QTL mapping for seed mineral concentrations and contents in pea (Pisum sativum L.). BMC Plant Biol 17:43. https://doi.org/10.1186/s12870-016-0956-4

    Article  CAS  Google Scholar 

  • Amarakoon R (2012) Study on amino acid content in selected varieties of Pisum sativum (peas) by ion-exchange chromatography. In: International conference on nutrition and food science, IPCBEE vol 39. IACSIT Press, Singapore

    Google Scholar 

  • Ambrose M (2008) Garden pea. In: Prohens J, Nuez F (eds) Vegetables II, handbook of plant breeding, vol 2. Springer, New York, pp 3–26

    Google Scholar 

  • Ambrose MJ, Maxted N, Coyne CJ et al (2011) Phylogeny, phylogeography and genetic diversity of the Pisum genus. Plant Genet Resour 9:4–18

    Article  Google Scholar 

  • Aney A (2013) Effect of gamma irradiation on yield attributing characters in two varieties of pea (Pisum sativum L.). Int J Life Sci 1(4):241–247

    Google Scholar 

  • Annicchiarico P (2008) Adaptation of cool-season grain legume species across climatically contrasting environments of southern Europe. Agron J 100(6):1647–1654

    Article  Google Scholar 

  • Anonymous (1977) Manual on mutation breeding. IAEA, Vienna

    Google Scholar 

  • Anonymous (1980) Induced mutations for the improvement of grain legume production. Report of a Research Co-ordination Meeting, Kuala Lumpur, Malaysia, IAEA-TECDOC-234

    Google Scholar 

  • Anonymous (1982) Induced mutations for the improvement of grain legume production II. Report of a Research Co-ordination Meeting, Chiang Mai, Thailand, IAEA-TECOOC-260

    Google Scholar 

  • Anonymous (1983) Induced mutations for the improvement of grain legume production III. Report of a Research Co-ordination Meeting, Seoul, Korea, IAEA-TECDOC-299

    Google Scholar 

  • Anonymous (1984) Induced mutations for crop improvement in Latin America. Proc Regional Seminar, Lima, Peru, IAEA-TECDOC-305

    Google Scholar 

  • Arcioni S, Damiani F, Mariani A, Pupilli F (1997) Somatic hybridization and embryo rescue for the introduction of wild germplams. In: McKersie BD, Brown DCW (eds) Biotechnology and the improvement of forage legumes. CAB International, Oxon, pp 61–89

    Google Scholar 

  • Arnoldi A, Zanoni C, Lammi C, Boschin G (2015) The role of grain legumes in the prevention of hypercholesterolemia and hypertension. CRC Crit Rev Plant Sci 34:144–168. https://doi.org/10.1080/07352689.2014.897908

    Article  CAS  Google Scholar 

  • Aryamanesh N, Byrne O, Hardie DC et al (2012) Large-scale density-based screening for pea weevil resistance in advanced backcross lines derived from cultivated field pea (Pisum sativum) and Pisum fulvum. Crop Pasture Sci 63:612–618. https://doi.org/10.1071/CP12225

    Article  Google Scholar 

  • Aslam M, Arif M, Pandey KL et al (2006) Studies on in vitro regeneration in pea (Pisum sativum L.) var. Arkel. Biochem Cell Arch 6(1):111–116

    Google Scholar 

  • Atkinson NJ, Lilley CJ, Urwin PE (2013) Identification of genes involved in the response to simultaneous biotic and abiotic stress. Plant Physiol 162:2028–2041. https://doi.org/10.1104/pp.113.222372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aubert G, Morin J, Jacquin F et al (2006) Functional mapping in pea, as an aid to the candidate gene selection and for investigating synteny with the model legume Medicago truncatula. Theor Appl Genet 112:1024–1041. https://doi.org/10.1007/s00122-005-0205-y

    Article  CAS  PubMed  Google Scholar 

  • Badr HM, Khalaf-Allah AM, Abdel-Al ZE (1975) Comparative effects of gamma radiation on productive characters of two pea cultivars (Pisum sativum L.) and their first-generation hybrid. Proceedings of the 1st Conference on Nuclear Science Application, Cairo

    Google Scholar 

  • Bala M, Nag T, Mathur K et al (2010) In vitro callus induction for determination of lectin activity in pea (Pisum sativum L.). variety (AP-1). Rom Biotechnol Lett 15:5781–5787

    CAS  Google Scholar 

  • Banniza S, Hashemi P, Warkentin TD et al (2005) The relationships among lodging, stem anatomy, degree of lignification, and resistance to mycosphaerella blight in field pea (Pisum sativum). Can J Bot 83(8):954–967

    Article  Google Scholar 

  • Bateson W (1902) Mendel’s principles of heredity. Qv part II with biographical notice of Mendel and translation of the paper on hybridization. Cambridge University Press, GP Putnam’s Sons, New York, pp 317–361

    Google Scholar 

  • Ben-Ze’ev N, Zohary D (1973) Species relationships in the genus Pisum L. in Israel. Isr J Bot 22:73–91

    Google Scholar 

  • Berjak P, Mycock DJ, Watt P et al (1995) Cryostorage of pea (Pisum sativum L.). In: Towill LE, Bajaj YPS (eds) Cryopreservation of plant germplasm I. Biotechnology in agriculture and forestry, vol 32. Springer, Berlin, pp 292–307

    Chapter  Google Scholar 

  • Blixt S (1970) Pisum. In: Frankel OH, Bennet E (eds) Genetic resources in plants: their exploration and conservation. International biological programme. Blackwell Publications, Oxford, pp 321–326

    Google Scholar 

  • Blixt S (1972) Mutation genetics in Pisum. Agric Hortic Genet 30:1–293

    Google Scholar 

  • Blixt S (1974) The pea. In: King RC (ed) Handbook of genetics, vol 2. Plenum Press, New York, pp 181–221

    Chapter  Google Scholar 

  • Bobille H, Fustec J, Robins RJ et al (2019) Effect of water availability on changes in root amino acids and associated rhizosphere on root exudation of amino acids in Pisum sativum L. Phytochemistry 161:75–85

    Article  CAS  PubMed  Google Scholar 

  • Bohra A, Pandey MK, Jha UC et al (2014) Genomics-assisted breeding in four major pulse crops of developing countries: present status and prospects. Theor Appl Genet 127:1263–1291. https://doi.org/10.1007/s00122-014-2301-3

    Article  PubMed  PubMed Central  Google Scholar 

  • Bordat A, Savois V, Nicolas M et al (2011) Translational genomics in legumes allowed placing in silico 5460 unigenes on the pea functional map and identified candidate genes in Pisum sativum L. G3 (Bethesda) 1(2):93–103. https://doi.org/10.1534/g3.111.000349

    Article  CAS  Google Scholar 

  • Boutet G, Carvalho SA, Falque M et al (2016) SNP discovery and genetic mapping using genotyping by sequencing of whole genome genomic DNA from a pea RIL population. BMC Genomics 17:121. https://doi.org/10.1186/s12864-016-2447-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Braun AC (1974) Biology of cancer. Addison-Wesley Pub Co, London

    Google Scholar 

  • Carpenter MA, Goulden DS, Woods CJ et al (2018) Genomic selection for ascochyta blight resistance in pea. Front Plant Sci 9:1878. https://doi.org/10.3389/fpls.2018.01878

    Article  PubMed  PubMed Central  Google Scholar 

  • Ceyhan E, Avci MA (2015) Determination of some agricultural characters of developed pea (Pisum sativum L.) lines. Int J Biol Biomol Agric Food Biotechnol Eng 9(12):1235–1238

    Google Scholar 

  • Chahal GS, Gosal SS (2002) Principles and procedures of plant breeding-biotechnological and conventional approaches. Narosa Publishing, New Delhi

    Google Scholar 

  • Chen K, Wang Y, Zhang R et al (2019) CRISPR/Cas genome editing and precision plant breeding in agriculture. Annu Rev Plant Biol 70:667–697

    Article  CAS  PubMed  Google Scholar 

  • Chimwamurombe PM, Khulbe RK (2011) Domestication. In: Pratap A, Kumar J (eds) Biology and breeding of food legumes. CABI, Cambridge, MA, pp 19–34

    Chapter  Google Scholar 

  • Clement SL, McPhee KE, Elberson LR, Evans MA (2009) Pea weevil, Bruchuspisorum L. (Coleoptera: Bruchidae), resistance in Pisum sativum x Pisum fulvum interspecific crosses. Plant Breed 128:478–485. https://doi.org/10.1111/j.1439-0523.2008.01603.x

    Article  Google Scholar 

  • Coakley SM, Scherm H, Chakraborty S (1999) Climate change and plant disease management. Annu Rev Phytopathol 37:399–426. https://doi.org/10.1146/annurev.phyto.37.1.399

    Article  CAS  PubMed  Google Scholar 

  • Collard BCY, Mackill DJ (2008) Marker-assisted selection: an approach for precision plant breeding in the twenty-first century. Philos Trans R Soc Lond Ser B Biol Sci 363:557–572. https://doi.org/10.1098/rstb.2007.2170

    Article  CAS  Google Scholar 

  • Constabel F (1984) Fusion of protoplasts by polyethylene glycol (PEG). In: Vasil IK (ed) Cell culture and somatic cell genetics of plants: volume 1: laboratory procedures and their applications. Academic, Orlando, pp 414–422

    Google Scholar 

  • Coyne CJ, Porter LD, Boutet G et al (2019) Confirmation of Fusarium root rot resistance QTL Fsp-Ps 2.1 of pea under controlled conditions. BMC Plant Biol 19(1):98

    Article  PubMed  PubMed Central  Google Scholar 

  • Cruz-Suarez LE, Ricque-Marie D, Tapia-Salazar M et al (2001) Assessment of differently processed feed pea (Pisum sativum) meals and canola meal (Brassica sp.) in diets for blue shrimp (Litopenaeus stylirostris). Aquaculture 196:87–104

    Article  Google Scholar 

  • Dahl WJ, Foster LM, Tyler RT (2012) Review of the health benefits of peas (Pisum sativum L.). Br J Nutr 108:S3–S10. https://doi.org/10.1017/s0007114512000852

    Article  CAS  PubMed  Google Scholar 

  • Dalmais M, Schmidt J, Le Signor C et al (2008) UTILLdb, a Pisum sativum in silico forward and reverse genetics tool. Genome Biol 9:R43. https://doi.org/10.1186/gb-2008-9-2-r43

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davey JW, Hohenlohe PA, Etter PD et al (2011) Genome-wide genetic marker discovery and genotyping using next-generation sequencing. Nat Rev Genet 12(7):499–510

    Article  CAS  PubMed  Google Scholar 

  • Davies DR, Berry GJ, Heath MC, Dawkins TCK (1985) Pea (Pisum sativum L.). In: Summerfield RJ, Roberts EH (eds) Grain legume crops. Williams Collins, London, pp 147–198

    Google Scholar 

  • De Vilmorin P (1911) Fixite des races de froments. In: de Vilmorin P (ed) IVe Conference Internationale de Genetique-Paris, Comptes-rendus et Rapport, vol 1913. Masson, Paris, pp 312–316

    Google Scholar 

  • Decarie J, Coyne C, Brumett S, Shultz J (2012) Additional pea EST-SSR markers for comparative mapping in pea (Pisum sativum L.). Plant Breed 131:222–226

    Article  CAS  Google Scholar 

  • Dhall RK (2017) Pea cultivation, Bulletin no PAU/2017/Elec/FB/E/29. Punjab Agricultural University, Ludhiana

    Google Scholar 

  • Díez MJ, De la Rosa L, Martín I et al (2018) Plant genebanks: present situation and proposals for their improvement. The case of the Spanish network. Front Plant Sci 9:1794. https://doi.org/10.3389/fpls.2018.01794

    Article  PubMed  PubMed Central  Google Scholar 

  • Dirlewanger E, Isaac PG, Ranade S et al (1994) Restriction fragment length polymorphism analysis of loci associated with disease resistance genes and developmental traits in Pisum sativum L. Theor Appl Genet 88(1):17–27

    Article  CAS  PubMed  Google Scholar 

  • Dita MA, Rispail N, Prats E et al (2006) Biotechnology approaches to overcome biotic and abiotic stress constraints in legumes. Euphytica 147(1–2):1–24

    Article  Google Scholar 

  • Duarte J, Rivière N, Baranger A et al (2014) Transcriptome sequencing for high throughput SNP development and genetic mapping in pea. BMC Genomics 15:126. https://doi.org/10.1186/1471-2164-15-126

    Article  PubMed  PubMed Central  Google Scholar 

  • Duc G, Messager J (1989) A mutagenesis of pea (Pisum sativum L.) and the isolation of mutants for nodulation and nitrogen-fixation. Plant Sci 60:207–213

    Article  Google Scholar 

  • Dumont E, Fontaine V, Vuylsteker C et al (2009) Association of sugar content QTL and PQL with physiological traits relevant to frost damage resistance in pea under field and controlled conditions. Theor Appl Genet 118:1561–1571. https://doi.org/10.1007/s00122-009-1004-7

    Article  CAS  PubMed  Google Scholar 

  • Durieu P, Ochatt SJ (2000) Efficient intergeneric fusion of pea (Pisum sativum L.) and grass pea (Lathyrus sativus L.) protoplasts. J Exp Bot 51:1237–1242

    CAS  PubMed  Google Scholar 

  • Duveiller E, Singh RP, Nicol JM (2007) The challenges of maintaining wheat productivity: pests, diseases and potential epidemics. Euphytica 157:417–430. https://doi.org/10.1007/s10681-007-9380-z

    Article  Google Scholar 

  • Ellis THN (2011) Pisum. In: Kole C (ed) Wild crop relatives: genomic and breeding resources. Springer, Berlin, pp 237–248

    Chapter  Google Scholar 

  • Ellis TH, Turner L, Hellens RP et al (1992) Linkage maps in pea. Genet 130(3):649–663

    Article  CAS  Google Scholar 

  • Ezhova TA, Bagrova AM, Gostimskii SA (1985) Shoot formation in calluses from stem tips, epicotyls, internodes and leaves of different pea genotypes. Sov Plant Physiol 32:409–414

    Google Scholar 

  • FAO/IAEA (2018) Manual on mutation breeding, 3rd edn. FAO, Rome

    Google Scholar 

  • Fisher RA (1936) Has Mendel’s work been rediscovered? Ann Sci 1:115–137

    Article  Google Scholar 

  • Flavell A, Dumet D, Duc G et al (2011) Legume genetic resources: management, diversity assessment, and utilization in crop improvement. Euphytica 180:27–47

    Article  Google Scholar 

  • Fong SS, Burgard AP, Herring CD et al (2005) In silico design and adaptive evolution of Escherichia coli for production of lactic acid. Biotechnol Bioeng 91(5):643–648

    Article  CAS  PubMed  Google Scholar 

  • Ford-Lloyd B, Jarvis A, Guarino L et al (2010) A global approach to crop wild relative conservation: securing the gene pool for food and agriculture. Kew Bull 65:561–576

    Article  Google Scholar 

  • Fowler C, Hodgkin T (2004) Plant genetic resources for food and agriculture: assessing global availability. Annu Rev Environ Resour 29:143–179. https://doi.org/10.1146/annurev.energy.29.062403.102203

    Article  Google Scholar 

  • Foyer CH, Lam HM, Nguyen HT et al (2016) Neglecting legumes has compromised human health and sustainable food production. Nat Plants 2(8). https://doi.org/10.1038/PLANTS2016.112

  • Frew TJ, Russell AC, Timmerman-Vaughan GM (2002) Sequence tagged site markers linked to the sbm1 gene for resistance to pea seedborne mosaic virus in pea. Plant Breed 121(6):512–516

    Article  CAS  Google Scholar 

  • Fujioka T, Fujita M, Iwamoto K (2000) Plant regeneration of Japanese pea cultivars by in vitro culture of immature leaflets. J Jpn Soc Hortic Sci 69:656–658

    Article  Google Scholar 

  • Gali KK, Liu Y, Sindhu A et al (2018) Construction of high-density linkage maps for mapping quantitative trait loci for multiple traits in field pea (Pisum sativum L.). BMC Plant Biol 18(1):172

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gali KK, Tar’an B, Madoui MA et al (2019) Development of a sequence-based reference physical map of pea (Pisum sativum L.). Front Plant Sci 10:323

    Article  PubMed  PubMed Central  Google Scholar 

  • Gelin O (1954) X-ray mutants in peas and vetches. Acta Agric Scand 4:558–568

    Article  Google Scholar 

  • Gelin O (1955) Studies on the X-ray mutation stral pea. Agric Hortic Genet 13:183–193

    Google Scholar 

  • Gepts P (2006) Plant genetic resources conservation and utilization. Crop Sci 46:2278–2292. https://doi.org/10.2135/cropsci2006.03.0169gas

    Article  Google Scholar 

  • Ghafoor A, McPhee K (2012) Marker assisted selection (MAS) for developing powdery mildew resistant pea cultivars. Euphytica 186:593–607. https://doi.org/10.1007/s10681-011-0596-6

    Article  CAS  Google Scholar 

  • Ghafoor AB, Ahmad ZA, Anwar RA (2005) Genetic diversity in Pisum sativum and a strategy for indigenous biodiversity conservation. Pak J Bot 37(1):71–77

    Google Scholar 

  • Ghanem SA, El-Bahr MK, Saker MM, Badr A (1996) In vitro studies on pea (Pisum sativum L.): I. Callus formation, regeneration and rooting. Plant Biosyst 130:695–705. https://doi.org/10.1080/11263509609438342

    Article  Google Scholar 

  • Gibson G, Muse SV (2009) A primer of genome science, 3rd edn. Sinauer Associates, Sunderland

    Google Scholar 

  • Gong YM, Xu SC, Mao WH et al (2010) Developing new SSR markers from ESTs of pea (Pisum sativum L.). J Zhejiang Univ Sci B 11(9):702–707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Govorov L (1937) Pisum. In: Vavilov N, Wulff E (eds) Flora of cultivated plants. IV. Grain Leguminosae. State Agricultural Publishing Company, Moscow, pp 231–336

    Google Scholar 

  • Grant J, Cooper P (2006) Peas (Pisum sativum L.). In: Wang K (ed) Methods in molecular biology, vol 343, agrobacterium protocols 2/e vol 1. Humana Press, Totwa, pp 337–346

    Google Scholar 

  • Grant JE, Cooper PA, McAra AE, Frew TJ (1995) Transformation of peas (Pisum sativum L.) using immature cotyledons. Plant Cell Rep 15(3–4):254–258

    Article  CAS  PubMed  Google Scholar 

  • Grant JE, Thomson LMJ, Pither-Joyce MD et al (2003) Influence of Agrobacterium tumefaciens strain on production of transgenic peas (Pisum sativum L.). Plant Cell Rep 21:1207–1210

    Article  CAS  PubMed  Google Scholar 

  • Gritton ET (1986) Pea breeding. In: Bassett MJ (ed) Breeding vegetable crops. AVI, Westport, pp 283–319

    Google Scholar 

  • Guindon MF, Eugenia M, Aldana Z et al (2016) Evaluation of SRAP markers for mapping of Pisum sativum L. Crop Breed Appl Biotechnol 16:182–188

    Article  CAS  Google Scholar 

  • Hall C, Hillen C, Garden-Robinson J (2017) Compositional, nutritional value, and health benefits of pulses. Cereal Chem 94:11–31. https://doi.org/10.1094/CCHEM-03-16-0069-FI

    Article  CAS  Google Scholar 

  • Hamon C, Baranger A, Coyne CJ et al (2011) New consistent QTL in pea associated with partial resistance to Aphanomyces euteiches in multiple field and controlled environments from France and the United States. Theor Appl Genet 123:261–281

    Article  PubMed  Google Scholar 

  • Hanci F (2019) Genetic variability in peas (Pisum sativum L.) from Turkey assessed with molecular and morphological markers. Folia Hortic 31(1):101–116

    Article  Google Scholar 

  • Hanocq E, Jeuffroy MH, Lejeune-Henaut I, Munier-Jolain N (2009) Construire des idéotypes pour des systèmes de culture variésen pois d’hiver. Innov Agron 7:14–28

    Google Scholar 

  • Harlan JR (1992) Crops and man. American Society of Agronomy, Madison

    Book  Google Scholar 

  • Harlan JR, de Wet JMJ, Stemler ABL (1976) Plant domestication and indigenous African agriculture. In: Harlan JR, de Wet JMJ, Stemler ABL (eds) Origins of African plant domestication. Mouton, The Hague, pp 3–19

    Chapter  Google Scholar 

  • Haskins RH, Kartha KK (1980) Freeze preservation of pea meristems: cell survival. Can J Bot 58:833–840

    Article  Google Scholar 

  • Haussmann BG, Parzies HK, Prester T et al (2004) Plant genetic resources in crop improvement. Plant Genet Resour 2(1):3–21

    Article  Google Scholar 

  • Hedley CL (2001) Carbohydrates in grain legume seeds. Improving nutritional quality and agronomic characteristics. CABI Publishing, Wallingford, pp 1–13

    Google Scholar 

  • Hofer J, Turner L, Moreau C et al (2009) Tendril-less regulates tendril formation in pea leaves. Plant Cell 21:420–428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holdsworth W, Gazave E, Cheng P et al (2017) A community resource for exploring and utilizing genetic diversity in the USDA pea single plant plus collection. Hort Res 4:17017. https://doi.org/10.1038/hortres.2017.17

    Article  CAS  Google Scholar 

  • Howard IIITP, Hayward AP, Tordillos A et al (2014) Identification of the maize gravitropism gene lazy plant1 by a transposon-tagging genome resequencing strategy. PLoS One 9(1):e87053

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Huang J, Li J, Zhou J et al (2018) Identifying a large number of high-yield genes in rice by pedigree analysis, whole-genome sequencing, and CRISPR-Cas9 gene knockout. PNAS 115:E7559–E7567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hussein HAS, Selim AR, El-Shawaf IIS (1974) EMS and gamma rays induced mutations in Pisum sativum. I. Effects on the frequency and spectrum of M2-chlorophyll mutation. Egypt J Genet Cytol 3:106–116

    Google Scholar 

  • Hussey G, Gunn HV (1984) Plant production in pea (Pisum sativum L. cvs Puget and Upton) from long term callus with superficial meristems. Plant Sci Lett 37:143–148

    Article  CAS  Google Scholar 

  • Jackson JA, Hobbs SLA (1990) Rapid multiple shoot production from cotyledonary node explant of pea (Pisum sativum L.). In Vitro Cell Dev Biol 26:835–838

    Article  CAS  Google Scholar 

  • Jacobsen HJ, Kysely W (1984) Induction of somatic embryos in pea, Pisum sativum L. Plant Cell Tissue Organ Cult 3:319–324

    Article  CAS  Google Scholar 

  • Jain S, Weeden NF, Porter LD et al (2013) Finding linked markers to En for efficient selection of pea enation mosaic virus resistance in pea. Crop Sci 53:2392–2398. https://doi.org/10.2135/cropsci2013.04.0211

    Article  Google Scholar 

  • Jang TH, Park SC, Yang JH et al (2017) Cryopreservation and its clinical applications. Integr Med Res 6(1):12–18

    Article  PubMed  PubMed Central  Google Scholar 

  • Jantama K, Haupt MJ, Svoronos SA et al (2008) Combining metabolic engineering and metabolic evolution to develop nonrecombinant strains of Escherichia coli C that produce succinate and malate. Biotechnol Bioeng 99(5):1140–1153

    Article  CAS  PubMed  Google Scholar 

  • Jarso M, Keneni G, Gorfu D (2009) Field pea improvement through hybridization, Technical Manual 22. Ethiopian Institute of Agricultural Research (EIAR), Addis Ababa

    Google Scholar 

  • Jha AB, Arganosa G, Tar’an B et al (2013) Characterization of 169 diverse pea germplasm accessions for agronomic performance, Mycosphaerella blight resistance and nutritional profile. Genet Resour Crop Evol 60:747–761

    Article  Google Scholar 

  • Jha AB, Gali KK, Tar’an B, Warkentin TD (2017) Fine mapping of QTLs for ascochyta blight resistance in pea using heterogeneous inbred families. Front Plant Sci 8:765. https://doi.org/10.3389/fpls.2017.00765

    Article  PubMed  PubMed Central  Google Scholar 

  • Jing R, Vershinin A, Grzebyta J et al (2010) The genetic diversity and evolution of field pea (Pisum) studied by high throughput retrotransposon-based insertion polymorphism (RBIP) marker analysis. BMC Evol Biol 1:44

    Article  CAS  Google Scholar 

  • Kahlon JG, Jacobsen H, Chatterton S et al (2018) Lack of efficacy of transgenic pea (Pisum sativum L.) stably expressing antifungal genes against Fusarium spp. in three years of confined field trials. GM Crops Food 9:90–108. https://doi.org/10.1080/21645698.2018.1445471

    Article  PubMed  PubMed Central  Google Scholar 

  • Kartha KK (1981) Meristem culture and cryopreservation-methods and applications. In: Thorpe TA (ed) Plant tissue culture, methods and applications in agriculture. Academic, New York, pp 181–212

    Chapter  Google Scholar 

  • Kartha KK, Engelmann F (1994) Cryopreservation and germplasm storage. In: Vasil IK, Thorpe TA (eds) Plant cell and tissue culture. Springer, Dordrecht

    Google Scholar 

  • Kaur S, Pembleton LW, Cogan NO et al (2012) Transcriptome sequencing of field pea and Faba bean for discovery and validation of SSR genetic markers. BMC Genomics 13:104. https://doi.org/10.1186/1471-2164-13-104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kharkwal MC, Cagirgan MI, Toker C et al (2010) Legume mutant varieties for food, feed and environmental benefits. Proceedings of the 5th international food legumes research conference (IFLRC) & 7th European conference on grain legumes (AEP VII), Antalya, Turkey, 26–30 April 2010

    Google Scholar 

  • Kharkwal M, Pandey R, Pawar S (2004) Mutation breeding for crop improvement. In: Jain HK, Kharkwal MC (eds) Plant breeding – mendelian to molecular approaches. Narosa Publishing, New Delhi, pp 601–645

    Google Scholar 

  • Khodapanahi E, Lefsrud M, Orsat V et al (2012) Study of pea accessions for development of an oilseed pea. Energies 5:3788–3802

    Article  Google Scholar 

  • Khoury CK, Bjorkmann AD, Dempewolf H et al (2014) Increasing homogeneity in global food supplies and the implications for food security. Proc Natl Acad Sci U S A 111:4001–4006. https://doi.org/10.1073/pnas.1313490111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khoury CK, Achicanoy HA, Bjorkman AD et al (2016) Origins of food crops connect countries worldwide. Proc Biol Sci 283(1832):2060792. https://doi.org/10.1098/rspb.2016.0792

    Article  Google Scholar 

  • Kirakosyan A, Kaufman PB (2009) Recent advances in plant biotechnology. Springer, Dordrecht

    Book  Google Scholar 

  • Komor AC, Kim YB, Packer MS et al (2016) Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533:420–424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuchel H, Langridge P, Mosionek L et al (2006) The genetic control of milling yield, dough rheology and baking quality of wheat. Theor Appl Genet 112(8):1487–1495. https://doi.org/10.1007/s00122-006-0252-z

    Article  CAS  PubMed  Google Scholar 

  • Kulaeva OA, Zhernakov AI, Afonin AM et al (2017) Pea marker database (PMD) – a new online database combining known pea (Pisum sativum L.) gene-based markers. PLoS One 12(10):e0186713. https://doi.org/10.1371/journal.pone.0186713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar A, Mishra MN, Kharkwal MC (2007) Induced mutagenesis in black gram (Vigna mungo L. Hepper). Indian J Genet 67(1):41–46

    Google Scholar 

  • Kumar PR, Kumar M, Dogra RK, Bharat NK (2015) Variability and character association studies in garden pea (Pisum sativum var. hortense L.) during winter season at mid hills of Himachal. Legum Res 38(2):164–168

    Article  Google Scholar 

  • Kuo CY (1999) Development of a new green pea variety, Taichung 14. Bulletin of Trachung District Agricultural Improvement Station 58:21–32

    Google Scholar 

  • Kysely W, Myers JR, Lazzeri RA et al (1987) Plant regeneration via somatic embryogenesis in pea (Pisum sativum L.). Plant Cell Rep 6:305–308

    Article  CAS  PubMed  Google Scholar 

  • Lakić Ž, Stanković S, Pavlović S et al (2019) Genetic variability in quantitative traits of field pea (Pisum sativum L.) genotypes. Czech J Genet Plant Breed 55:1–7

    Article  Google Scholar 

  • Lehminger-Mertens R, Jacobsen HJ (1989) Protoplast regeneration and organogenesis from pea protoplasts. In Vitro Cell Dev Biol 25:571–574

    Article  Google Scholar 

  • Leonforte A, Sudheesh S, Cogan NO et al (2013) SNP marker discovery, linkage map construction and identification of QTLs for enhanced salinity tolerance in field pea (Pisum sativum L.). BMC Plant Biol 13:161. https://doi.org/10.1186/1471-2229-13-161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leppyanen IV, Kirienko AN, Dolgikh EA (2019) Agrobacterium rhizogenes-mediated transformation of Pisum sativum L. roots as a tool for studying the mycorrhizal and root nodule symbioses. PeerJ 7:e6552

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ljuština M, Mikić A (2010) A brief review on the early distribution of pea (Pisum sativum L.) in Europe. Field Veg Crop Res 47:457–460

    Google Scholar 

  • Lyanguzova IV (1999) Effects of nickel and copper on bilberry seed germination and seedling development. Russ J Plant Physiol 46:431–432

    CAS  Google Scholar 

  • Ma Y, Coyne CJ, Grusak MA et al (2017) Genome-wide SNP identification, linkage map construction and QTL mapping for seed mineral concentrations and contents in pea (Pisum sativum L.). BMC Plant Biol 17:43. https://doi.org/10.1186/s12870-016-0956-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mahalingam R (2015) Consideration of combined stress: a crucial paradigm for improving multiple stress tolerance in plants. In: Mahalingam R (ed) Combined stresses in plants. Springer, Cham, pp 1–25. https://doi.org/10.1007/978-3-319-07899-11

    Chapter  Google Scholar 

  • Malmberg RL (1979) Regeneration of whole plants from callus culture of diverse genetic lines of Pisum sativum L. Planta 146:243–244

    Article  CAS  PubMed  Google Scholar 

  • Mandal BB (1995) Methods of in vitro conservation: principles, prospects and constraints. In: Rana RS, Chandel KPS, Bhat SR et al (eds) Plant germplasm conservation: biotechnological approaches. National Bureau of Plant Genetic Resources, ICAR, New Delhi, pp 83–87

    Google Scholar 

  • Mandal BB, Tyagi RK, Pandey R et al (2000) In vitro conservation of germplasm of agri-horticultural crops at NBPGR: an overview. In: Razdan MK, Cocking EC (eds) Conservation of plant genetic resources in vitro. Vol 2: application and limitations. Science Publishers, Enfield, pp 297–307

    Google Scholar 

  • Marza F, Bai GH, Carver BF, Zhou WC (2005) Quantitative trait loci for yield and related traits in the wheat population Ning7840 × Clark. Theor Appl Genet 112(4):688–698. https://doi.org/10.1007/s00122-005-0172-3

    Article  CAS  PubMed  Google Scholar 

  • Maxted N, Ambrose M (2001) Peas (Pisum L.). In: Maxted N, Bennett SJ (eds) Plant genetic resources of legumes in the Mediterranean, Current plant science and biotechnology in agriculture, vol 39. Springer, Dordrecht, pp 181–190

    Chapter  Google Scholar 

  • McAdam EL, Reid JB, Foo E (2018) Gibberellins promote nodule organogenesis but inhibit the infection stages of nodulation. J Exp Bot 69:2117–2130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McAdams S, Ratnasabapathi D, Smith RA (1991) Influence of days of culture on cryoprotectant-supplemented medium and of terminal freezing temperature on the survival of cryopreserved pea shoot tips. Cryobiology 28:288–293

    Article  Google Scholar 

  • McCallum J, Timmerman-Vaughan GM, Frew T, Russell AC (1997) Biochemical and genetic linkage analysis of green seed color in field pea. J Am Soc Hortic Sci 122:218–225

    Article  CAS  Google Scholar 

  • McClendon MT, Inglis DA, McPhee KE, Coyne CJ (2002) DNA markers linked to Fusarium wilt race 1 resistance in pea. J Am Soc Hortic Sci 127(4):602–607

    Article  CAS  Google Scholar 

  • McDonald A, Riha S, DiTommasob A, DeGaetanoa A (2009) Climate change and the geography of weed damage: analysis of U.S. maize systems suggests the potential for significant range transformations. Agric Ecosyst Environ 130:131–140. https://doi.org/10.1016/j.agee.2008.12.007

    Article  Google Scholar 

  • Messiaen CM, Seif AA, Jarso M, Keneni G (2006) Pisum sativum L. In: Brink M, Belay G (eds) Plant resources of tropical Africa. PROTA, Wageningen

    Google Scholar 

  • Mikić A, Mihailović V, Duc G et al (2007) Evaluation of winter protein pea cultivars in the conditions of Serbia. Zbornik Radova Period Sci Res Field Veg Crops 44:107–112

    Google Scholar 

  • Miles CA, Furman BJ, Ambrose MJ et al (2011) Genetic adjustment to changing climates: pea. In: Hall AE, Lotze-Campen H, Hatfield JL et al (eds) Crop adaptation to climate change. Wiley Blackwell, Chichester

    Google Scholar 

  • Mishra A, Choudhuri MA (1999) Monitoring of phytotoxicity of lead and mercury from germination and early seedling growth indices in two rice cultivars. Water Air Soil Pollut 114:339–346

    Article  CAS  Google Scholar 

  • Mital RK, Verma PS (1991) Selection indices in table peas (Pisum sativum Linn). Indian J Genet 51(1):130–133

    Google Scholar 

  • Mittler R (2006) Abiotic stress, the field environment and stress combination. Trends Plant Sci 11:15–19. https://doi.org/10.1016/j.tplants.2005.11.002

    Article  CAS  PubMed  Google Scholar 

  • Mroginski LA, Kartha KK (1981) Regeneration of pea (Pisum sativum L. cv. Century) plants by in vitro culture of immature leaflets. Plant Cell Rep 1:64–66

    Article  CAS  PubMed  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15(3):473–497

    Article  CAS  Google Scholar 

  • Narsai R, Wang C, Chen J et al (2013) Antagonistic, overlapping and distinct responses to biotic stress in rice (Oryza sativa) and interactions with abiotic stress. BMC Genomics 14:93. https://doi.org/10.1186/1471-2164-14-93

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Natali L, Cavallini A (1987a) Nuclear cytology of callus and plantlets regenerated from pea (Pisum sativum L.) meristems. Protoplasma 143(2–3):121–125

    Article  Google Scholar 

  • Natali L, Cavallini A (1987b) Regeneration of pea (Pisum sativum L.) plantlets by in vitro culture of immature embryos. Plant Breed 99(2):172–176

    Article  Google Scholar 

  • Navrátilová A, Neumann P, Macas J (2005) Long-range organization of plant satellite repeats investigated using strand-specific FISH. Cytogenet Genome Res 109(1–3):58–62

    Article  PubMed  CAS  Google Scholar 

  • Neumann P, Pozárková D, Vrána J et al (2002) Chromosome sorting and PCR-based physical mapping in pea (Pisum sativum L.). Chromosom Res 10:63–71

    Article  CAS  Google Scholar 

  • Nielsen J (2005) Biotechnology for the future. In: Scheper T (ed) Advances in biochemical engineering/biotechnology. Springer, Heidelberg, pp 1–17

    Google Scholar 

  • Nielsen SVS, Poulsen GB, Larsen ME (1991) Regeneration of shoot from pea (Pisum sativum) hypocotyl explants. Physiol Plant 82(1):99–102

    Article  Google Scholar 

  • Nilsson J, Stegmark R, Akesson B (2004) Total antioxidant capacity in different pea (Pisum sativum) varieties after blanching and freezing. Food Chem 86:501–507

    Article  CAS  Google Scholar 

  • Nyarai-Horvath F, Szalai T, Kadar I, Csatho P (1997) Germination characteristics of pea seeds originating from a field trial treated with different levels of harmful elements. Acta Agron Hung 45:147–154

    CAS  Google Scholar 

  • Obroucheva NV, Bystrova EI, Ivanov VB et al (1998) Root growth responses to lead in young maize seedlings. Plant Soil 200:55–61

    Article  CAS  Google Scholar 

  • Pandey P, Ramegowda V, Senthil-Kumar M (2015) Shared and unique responses of plants to multiple individual stresses and stress combinations: physiological and molecular mechanisms. Front Plant Sci 6:723. https://doi.org/10.3389/fpls.2015.00723

    Article  PubMed  PubMed Central  Google Scholar 

  • Patterson DT (1995) Effects of environmental stress on weed/crop interaction. Weed Sci 43:483–490

    Article  CAS  Google Scholar 

  • Paul AA, Southgate DAT (1988) In: McCance RA, Widdwson EM (eds) The composition of foods, 4th edn. Elsevier, Amsterdam, pp 175–177

    Google Scholar 

  • Peters K, Breitsameter L, Gerowitt B (2014) Impact of climate change on weeds in agriculture: a review. Agric Sustain Dev 34:707–721. https://doi.org/10.1007/s13593-014-0245-2

    Article  Google Scholar 

  • Pevsner J (2009) Bioinformatics and functional genomics, 2nd edn. Wiley-Blackwell, Hoboken

    Book  Google Scholar 

  • Phillips DA (1980) Efficiency of symbiotic nitrogen fixation in legumes. Annu Rev Plant Physiol 31:29–49

    Article  CAS  Google Scholar 

  • Pniewski T, Kapusta J (2005) Efficiency of transformation of Polish cultivars of pea (Pisum sativum L.) with various regeneration capacities by using hyper virulent Agrobacterium tumefaciens strains. J Appl Genet 46:139–147

    PubMed  Google Scholar 

  • Pniewsky T, Wachowiak J, Kapusta J, Legocki A (2003) Organogenesis and long-term micropropagations polish pea cultivars. Acta Soc Bot Pol 72:295–302

    Article  Google Scholar 

  • Power JB, Cummins SE, Cocking EC (1970) Fusion of isolated plant protoplasts. Nature 225(5237):1016–1018

    Article  CAS  PubMed  Google Scholar 

  • Prasad PV, Pisipati SR, Momcilovic I, Ristic Z (2011) Independent and combined effects of high temperature and drought stress during grain filling on plant yield and chloroplast EF-Tu expression in spring wheat. J Agron Crop Sci 197:430–441. https://doi.org/10.1111/j.1439-037X.2011.00477.x

    Article  CAS  Google Scholar 

  • Prasch CM, Sonnewald U (2013) Simultaneous application of heat, drought, and virus to Arabidopsis plants reveals significant shifts in signaling networks. Plant Physiol 162:1849–1866. https://doi.org/10.1104/pp.113.221044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Puonti-Kaerlas J, Eriksson T, Engstrom P (1990) Production transgenic pea (Pisum sativum L.) plants by Agrobacterium tumefaciens mediated gene transfer. Theor Appl Genet 80:246–252

    Article  CAS  PubMed  Google Scholar 

  • Qasim M, Zubair M, Wadan D (2002) Evaluation of exotic cultivars of pea in swat valley. Sarhad J Agric 17(4):545–548

    Google Scholar 

  • Rajput V, Singh NP (2010) Studies on in vitro regeneration and direct organogenesis in pea (Pisum sativum L.). Indian J Plant Physiol 15:246–249

    CAS  Google Scholar 

  • Ramegowda V, Senthil-Kumar M (2015) The interactive effects of simultaneous biotic and abiotic stresses on plants: mechanistic understanding from drought and pathogen combination. J Plant Physiol 176:47–54. https://doi.org/10.1016/j.jplph.2014.11.008

    Article  CAS  PubMed  Google Scholar 

  • Rana JC, Rana M, Sharma V et al (2017) Genetic diversity and structure of pea (Pisum sativum L.) germplasm based on morphological and SSR markers. Plant Mol Biol Rep 35(1):118–129

    Article  CAS  Google Scholar 

  • Reid JB, Ross JJ (2011) Mendel’s genes: toward a full molecular characterization. Genetics 189:3–10

    Google Scholar 

  • Rogers SO, Bendich AJ (1985) Extraction of DNA from milligram amounts of fresh, herbarium and mummified plant tissues. Plant Mol Biol 5:69–76. https://doi.org/10.1007/BF00020088. PMID: 24306565

    Article  CAS  PubMed  Google Scholar 

  • Rubluo A, Kartha KK, Mroginski LA, Dyck S (1984) Plant regeneration from pea leaf lets cultured in vitro and genetic stability of regeneration. J Plant Physiol 117:119–130

    Article  CAS  PubMed  Google Scholar 

  • Sagan M, Duc G (1996) Sym28 and Sym29, two new genes involved in regulation of nodulation in pea (Pisum sativum L.). Symbiosis 20:229–245

    Google Scholar 

  • Sagan M, Huguet T, Duc G (1994) Phenotypic characterization and classification of nodulation mutants of pea (Pisum sativum L.). Plant Sci 100:59–70

    Article  CAS  Google Scholar 

  • Sagar P, Chandra S (1977) Heterosis and combining ability in urdbean. Indian J Genet Plant Breed 37(3):420–425

    Google Scholar 

  • Samatadze TE, Zelenina DA, Shostak NG et al (2008) Comparative genome analysis in pea Pisum sativum L. varieties and lines with chromosomal and molecular markers. Russ J Genet 44(12):1424

    Article  CAS  Google Scholar 

  • Samatadze TE, Badaeva ED, Popov KV et al (2018) “Space” pea Pisum sativum L. and wheat Triticum compactum host. Plants as objects of cytogenetic studies. Biol Bull 45:528–536

    Article  Google Scholar 

  • Sanchez EA, Mosquera T (2006) Establishing a methodology for inducing the regeneration of pea (Pisum sativum L.) explants, ‘Santa Isabel’ variety. Agron Colomb 24:17–27

    Google Scholar 

  • Scherm H, Coakley SM (2003) Plant pathogens in a changing world. Australas Plant Pathol 32:157–165. https://doi.org/10.1071/AP03015

    Article  Google Scholar 

  • Schiltz S, Gallardo K, Huart M et al (2004) Proteome reference maps of vegetative tissues in pea. An investigation of nitrogen mobilization from leaves during seed filling. Plant Physiol 135:2241–2260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schroeder HE, Schotz AH, Wardley-Richardson T (1993) Transformation and regeneration of two cultivars of pea (Pisum sativum L.). Plant Physiol 101(3):751–757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma R, Kaushal RP (2004) Generation and characterization of pea (Pisum sativum L.) somaclones for resistance to Aschochyta blight and powdery mildew. Indian J Biotechnol 3:400–408

    CAS  Google Scholar 

  • Sharma B, Kharkwal MC (1983) Mutation studies and mutation breeding in grain legumes. In: Induced mutations for improvement of grain legume production III. IAEA, TECDOC, Vienna, pp 65–75

    Google Scholar 

  • Sharma A, Plaha P, Rathour R et al (2009) Induced mutagenesis for improvement of garden pea. Int J Veg Sci 16:60–72. https://doi.org/10.1080/19315260903195634

    Article  Google Scholar 

  • Shimatani Z, Kashojiya S, Takayama M et al (2017) Targeted base editing in rice and tomato using a CRISPR-Cas9 cytidine deaminase fusion. Nat Biotechnol 35:441–443

    Article  CAS  PubMed  Google Scholar 

  • Shubha K, Kaur V, Dhar S (2019) Genetic diversity assessment in garden pea (Pisum sativum L.) germplasm through principal component analysis. Int J Chem Stud 7(1):482–486

    CAS  Google Scholar 

  • Simakov GA (1989) Collection of pea varieties in breeding for yield. SelektsiyaiSemenovdstvo (Moskva) 6:11–13

    Google Scholar 

  • Sindhu A, Ramsay L, Sanderson LA et al (2014) Gene-based SNP discovery and genetic mapping in pea. Theor Appl Genet 127:2225–2241. https://doi.org/10.1007/s00122-014-2375-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh M, Singh B, Dev P, Kumar V (2017) Study of heterosis for yield and its related traits in table pea (Pisum sativum. spp. Hortense L). J Pharmacogn Phytochem SP 1:470–473

    Google Scholar 

  • Singh S, Singh B, Sharma VR et al (2019) Character association and path analysis in diverse genotypes of pea (Pisum sativum L.). Int J Curr Microbiol App Sci 8(2):706–713

    Article  Google Scholar 

  • Sinjushin A (2013) Mutation genetics of pea (Pisum sativum L.): what is done and what is left to do. Ratarstvo i povrtarstvo 50(2):36–43

    Article  Google Scholar 

  • Smýkal P (2014) Pea (Pisum sativum L.) in biology prior and after Mendel’s discovery. Czech J Genet Plant Breed 50:52–64

    Article  Google Scholar 

  • Smýkal P, Kenicer G, Flavell AJ et al (2011) Phylogeny, phylogeography and genetic diversity of the Pisum genus. Plant Genet Resour 9(1):4–18

    Article  Google Scholar 

  • Smýkal P, Aubert G, Burstin J et al (2012) Pea (Pisum sativum L.) in the genomic era. Agronomy 2:74–115

    Article  Google Scholar 

  • Smýkal P, Coyne C, Redden R, Maxted NP (2013) Pea. In: Singh M, Upadhyaya H, Bisht IS (eds) Genetic and genomic resources for grain legume improvement. Elsevier, London, pp 41–80

    Chapter  Google Scholar 

  • Smýkal P, Coyne CJ, Ambrose MJ et al (2015) Legume crops phylogeny and genetic diversity for science and breeding. Crit Rev Plant Sci 34(1–3):43–104. https://doi.org/10.1080/07352689.2014.897904

    Article  Google Scholar 

  • Smýkal P, Rajeev KV, Vikas KS et al (2016) From Mendel’s discovery on pea to today’s plant genetics and breeding. Theor Appl Genet 129(12):2267–2280

    Article  PubMed  CAS  Google Scholar 

  • Solanki IS, Sharma B (2002) Induced polygenic variability in different groups of mutagenic damage in lentil (Lens culinaris Medik.). Indian J Genet 62(2):135–139

    Google Scholar 

  • Sreedevi TK, Hoisington DA, Kannan S et al (2009) AFLP-based molecular characterization of an elite germplasm collection of Jatropha curcas L., a biofuel plant. Plant Sci 176:505–513

    Article  PubMed  CAS  Google Scholar 

  • Surma M, Adamski T, Święcicki W et al (2013) Preliminary results of in vitro culture of pea and lupin embryos for the reduction of generation cycles in single seed descent technique. Acta Soc Bot Pol 82(3):231–236

    Article  Google Scholar 

  • Suzuki N, Rivero RM, Shulaev V et al (2014) Abiotic and biotic stress combinations. New Phytol 203:32–43. https://doi.org/10.1111/nph.12797

    Article  PubMed  Google Scholar 

  • Švábová L, Griga M (2008) The effect of cocultivation treatments on transformation efficiency in pea (Pisum sativum L.). Plant Cell Tissue Organ Cult 95(3):293–304

    Article  CAS  Google Scholar 

  • Tapingkae T, Zulkarnain Z, Kawaguchi M et al (2012) Somatic (asexual) procedures (haploids, protoplasts, cell selection) and their applications. In: Altman A, Hasegawa PM (eds) Plant biotechnology and agriculture-prospects for the 21st century. Academic, Cambridge, MA, pp 141–162

    Chapter  Google Scholar 

  • Taran B, Warkentin T, Somers DJ et al (2004) Identification of quantitative trait loci for grain yield, seed protein concentration and maturity in field pea (Pisum sativum). Euphytica 136:297–306

    Article  CAS  Google Scholar 

  • Tayeh N, Aluome C, Falque M et al (2015) Development of two major resources for pea genomics: the genopea 13.2K SNP array and a high-density, high-resolution consensus genetic map. Plant J 84:1257–1273. https://doi.org/10.1111/tpj.13070

    Article  CAS  PubMed  Google Scholar 

  • Tetu T, Sangwan RS, Noseel BS (1990) Direct somatic embryogenesis and organogenesis in cultured immature zygotic embryo of pea. J Plant Physiol 137(1):102–109

    Article  Google Scholar 

  • Timmerman-Vaughan GM, Frew TJ, Miller AL et al (1993) Linkage mapping of sbm-1, a gene conferring resistance to pea seed-borne mosaic virus, using molecular markers in Pisum sativum. Theor Appl Genet 85(5):609–615

    Article  Google Scholar 

  • Timmerman-Vaughan GM, Frew TJ, Weeden NF et al (1994) Linkage analysis of er-1, arecessive Pisum sativum gene for resistance to powdery mildew fungus (Erysiphe pisi D.C.). Theor Appl Genet 88:1050–1055

    Article  Google Scholar 

  • Timmerman-Vaughan GM, McCallum JA, Frew TJ et al (1996) Linkage mapping of quantitative trait loci controlling seed weight in pea. Theor Appl Genet 93:431–439

    Article  CAS  PubMed  Google Scholar 

  • Timmerman-Vaughan GM, Russell AC, Hill A et al (1997) DNA markers for disease resistance breeding in peas (Pisum sativum L.). Proc 50th N Z Plant Prot Conf 50:314–315

    Google Scholar 

  • Timmerman-Vaughan GM, Pither-Joyce MD, Cooper PA et al (2001) Partial resistance of transgenic peas to alfalfa mosaic virus under greenhouse and field conditions. Crop Sci 41:846–853. https://doi.org/10.2135/cropsci2001.413846x

    Article  CAS  Google Scholar 

  • Tiwari KR, Penner GA, Warkentin TD (1998) Identification of AFLP markers for the powdery mildew resistance gene er-2 in pea. Genome 41:440–444

    Article  CAS  Google Scholar 

  • Tzitzikas EN, Bergervoet M, Raemakers K et al (2004) Regeneration of pea (Pisum sativum L.) by a cyclic organogenesis system. Plant Cell Rep 23:453–460

    Article  CAS  PubMed  Google Scholar 

  • Ubayasena L, Bett K, Tar’an B, Warkentin T (2011) Genetic control and identification of QTLs associated with visual quality traits of field pea (Pisum sativum L.). Genome 54(4):261–272

    Article  PubMed  Google Scholar 

  • Valerio M, Lovelli S, Perniola M et al (2013) The role of water availability on weed-crop interactions in processing tomato for southern Italy. Acta Agric Scand Sect B 63:62–68. https://doi.org/10.1080/09064710.2012.715184

    Article  Google Scholar 

  • Van de Wouw M, Kik C, van Hintum T et al (2009) Genetic erosion in crops: concept, research results and challenges. Plant Genet Resour 8:1–15. https://doi.org/10.1017/S1479262109990062

    Article  Google Scholar 

  • Varshney RK, Kudapa H, Pazhamala L et al (2015) Translational genomics in agriculture: some examples in grain legumes. CRC Crit Rev Plant Sci 34:169–194. https://doi.org/10.1080/07352689.2014.897909

    Article  Google Scholar 

  • Vavilov NI (1992) Origin and geography of cultivated plants. In: Love D (Transl) (ed) The phystogeographical basis for plant breeding. Cambridge University Press, Cambridge, pp 316–366

    Google Scholar 

  • Vershinin AV, Allnutt TR, Knox MR et al (2003) Transposable elements reveal the impact of introgression, rather than transposition, in Pisum diversity, evolution, and domestication. Mol Biol Evol 20:2067–2075

    Article  CAS  PubMed  Google Scholar 

  • Vignesh M, Shanmugavadivel PS, Kokiladevi E (2011) Molecular markers in pea breeding – a review. Agric Rev 32(3):183–192

    Google Scholar 

  • Vijay KS, Datta S, Basfore S (2018) Performance of garden pea (Pisum sativum var hortense L.) varieties under conventional and organic nutrient sources under sub-Himalayan foothills of West Bengal, India. Int J Curr Microbiol App Sci 7(7):3231–3241

    Article  CAS  Google Scholar 

  • Vikas S, Singh P, Singh R (1996) Variability and inheritance of some quantitative characters in pea (Pisum sativum L.). Ann Biol (Ludhiana) 12(1):34–38

    Google Scholar 

  • Villani PJ, DeMason DA (2000) Roles of the Af and Tl genes in pea leaf morphogenesis: shoot ontogeny and leaf development in the heterozygotes. Ann Bot 85:123–135

    Google Scholar 

  • Vilmorin PD, Bateson W (1911) A case of gametic coupling in Pisum. Proc R Soc B Biol Sci 84:9–11. https://doi.org/10.1098/rspb.1911.0040

    Article  Google Scholar 

  • Wang Z, Luo Y, Li X et al (2008) Genetic control of floral zygomorphy in pea (Pisum sativum L.). Proc Natl Acad Sci U S A 105:10414–10419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Warkentin TD, Smykal P, Coyne CJ et al (2015) Pea (Pisum sativum L.). In: De Ron AM (ed) Grain legumes, Series handbook of plant breeding. Springer, New York, pp 37–83

    Chapter  Google Scholar 

  • Weeden NF (2018) Domestication of pea (Pisum sativum L.): the case of the abyssinian pea. Front Plant Sci 9:515. https://doi.org/10.3389/fpls.2018.00515

    Article  PubMed  PubMed Central  Google Scholar 

  • Weeden NF, Provvidenti R, Marx GA (1984) An isozyme marker for resistance to bean yellow mosaic virus in Pisum sativum. J Hered 75:411–412

    Article  Google Scholar 

  • Weeden NF, Ellis THN, Timmerman-Vaughan GM et al (1998) A consensus linkage map for Pisum sativum. Pisum Genet 30:1–3

    Google Scholar 

  • Weldon WFR (1902) Mendel’s laws of alternative inheritance in peas. Biometrika 1:228–254

    Article  Google Scholar 

  • Wellensiek SJ (1925) Pisum-crosses I. Genetica 7(1):1–64

    Article  Google Scholar 

  • Weller JL, Liew LC, Hecht VFG et al (2012) A conserved molecular basis for photoperiod adaptation in two temperate legumes. Proc Natl Acad Sci U S A 109:21158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamashita K (1980) Origin and dispersion of wheats with special reference to peripheral diversity. Z Pflanzenzüchtg 84:122–132

    Google Scholar 

  • Yang T, Fang L, Zhang X et al (2015) High-throughput development of SSR markers from pea (Pisum sativum L.) based on next generation sequencing of a purified Chinese commercial variety. PLoS One 10:e0139775. https://doi.org/10.1371/journal.pone.0139775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zelenov AN, Shchetinin VY, Sobolev DV (2008) Breeding value of pea form with dissected leaflet. Agrarnayanauka 2:19–20. (In Russian)

    Google Scholar 

  • Zeven AC, De Wet JMJ (1983) Dictionary of cultivated plants and their regions of diversity: excluding most ornamentals, forest trees and lower plants. Landbouwhogeschool, Wageningen

    Google Scholar 

  • Zhang C, Tar’an B, Warkentin T et al (2006) Selection for lodging resistance in early generations of field pea by molecular markers. Crop Sci 46:321–329

    Article  Google Scholar 

  • Zhang H, Mittal N, Leamy LJ, Barazani O, Song BH (2016) Back into the wild-Apply untapped genetic diversity of wild relatives for crop improvement. Evol Appl 10(1):5–24. https://doi.org/10.1111/eva.12434

  • Zhernakov A, Rotter B, Winter P et al (2017) Massive analysis of cDNA ends (MACE) for transcript-based marker design in pea (Pisum sativum L.). Genomics Data 11:75–76. https://doi.org/10.1016/j.gdata.2016.12.004. PMID: 28050346

    Article  PubMed  Google Scholar 

  • Zhihui S, Tzitzikas M, Raemakers K, Zhengqiang M et al (2009) Effect of TDZ on plant regeneration from mature seeds in pea (Pisum sativum). In Vitro Cell Dev Biol 45:776–782

    Article  Google Scholar 

  • Zhuang X, McPhee KE, Coram TE et al (2013) Development and characterization of 37 novel EST-SSR markers in Pisum sativum (Fabaceae). Appl Plant Sci 1:1200249. https://doi.org/10.3732/apps.1200249

    Article  Google Scholar 

  • Ziska LH, Tomecek MB, Gealy DR (2010) Evaluation of competitive ability between cultivated and red weedy rice as a function of recent and projected increases in atmospheric CO2. Agron J 102:118–123. https://doi.org/10.2134/agronj2009.0205

    Article  CAS  Google Scholar 

  • Zohary D, Hopf M (2000) Domestication of plants in the old world, 3rd edn. University Press, Oxford, pp 105–107

    Google Scholar 

  • Zong X, Guan JP, Wang SM et al (2008) Genetic diversity and core collection of alien Pisum sativum L. germplasm. Acta Agron Sin 34:1518–1528

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amal M. E. Abdel-Hamid .

Editor information

Editors and Affiliations

Appendices

Appendices

1.1 Appendix I-A: Major World Institutions Holding Pisum Germplasm

Country/Continent

FAO Inst. code

Institute

Number of accessions

Africa

IBCR

Institute of Biodiversity Conservation, Addis Ababa, Ethiopia

1600

Australia

AFTC

Australian Temperate Field Crop Collection, Horsham, England

6567

Bulgaria

SAD

Institute of Plant Introduction and Genetic Resources, Sadovo, Bulgaria

2787

China

ICAR-CAAS

Institute of Crop Sciences, CAAS, China

3837

Czech Republic

CZE

AGRITEC, Research, Breeding and Services Ltd., Sumperk, Czech Republic

1284

France

INRA

INRA CRG Légumineuse à grosses graines, Dijon, France

1891

Germany

GAT

Leibniz Institute of Plant Genetics and Crop Plant Research, Gaterleben, Germany

5336

Hungary

HUN

Institute for Agrobotany, Tapioszel, Hungary

1188

Italy

BAR

Istituto del Germoplasma, Bari, CNR – Istituto di GeneticaVegetale, Italy

4297

Netherlands

CGN

Centre for Genetic Resources, Wageningen, Netherlands

1008

Poland

WTD

Plant Breeding and Acclimatization Institute Blonie, Radzikow, Poland

2899

Russia

VIR

N.I. Vavilov Research Institute of Plant Industry, St. Petersburg, Russia

6790

Sweden

NGB

Nordic Gene Bank, Nordic Genetic Resource Centre, Alnarp, Sweden

2724

Syria

ICARDA

International Center for Agricultural Research in the Dry Areas, Aleppo, Syria

6105

Ukraine

UKR

Yurjev Institute of Plant Breeding, Kharkov, Ukraine

1671

United Kingdom

JIC

John Innes Centre, Norwich, UK

3557

United States

USDA; NYSAES

Plant Germplasm Introduction and Testing Research Station, Pullman; NY State Agricultural Experiment Station, USA

5400; 2500

  1. Source: Smýkal et al. (2012)

1.2 Appendix I-B: List of Web Databases Providing Links to Pea Related Information

Database

Website

Bioinformatics gateway towards integrative legume biology

http://www.legoo.org/

Cool Season Food Legume Genome Database

http://www.gabcsfl.org/

INRA Dijon Legume genetic and genomic resources

http://www.thelegumeportal.net

INRA Legume Base

http://195.220.91.17/legumbase/index.php?mode=0&id=

International Legume Database & Information Service (ILDIS)

http://www.ildis.org/

Know Pulse

http://knowpulse2.usask.ca

Legume Information System (LIS)

http://www.comparative-legumes.org/

Legume IP

http://plantgrn.noble.org/LegumeIP

Legume phylo-informatics database

http://www.public.asu.edu/~mfwojci/legumephylo_dBase.html

Legume proteomes

http://iant.toulouse.inra.fr/plants/legumes/cgi/legumes.cgi

Medicago truncatula HapMap Project

http://www.medicagohapmap.org/cgi-bin/gbrowse/mthapmap/

Phytozome -Soybean Gbrowser

http://www.phytozome.net/cgi-bin/gbrowse/soybean/

UTILLdb: URGV TILLING pea database

http://urgv.evry.inra.fr/UTILLdb

  1. Source: Smýkal et al. (2012)

1.3 Appendix II-A: List of Recommended Varieties of Peas in India

State

Recommended varieties

Bihar

DDR-23 (Pusa Prabhat), V L Matar -42

Chhattisgarth

Shubhra (IM-9101), Vikas (IPFD-99-13), Paras

Gujarat

JP-885, IPFD 10–12, Indra, Prakash

Haryana

Uttra (HFP-8909), DDR-27 (Pusa panna), Hariyal (HFP-9907 B), HFP-9426, Alankar, Jayanti (HFP-8712), Aman( IPF5-19)

Jharkhand

PL Matar-42, V L Matar -42

Madya Pradesh

Prakash (IPFD 1–10), Vikas (IPFD-99-13)

Maharashtra

JP-885, Ambika, Indra (KPMR-400), Adarsh (IPF 99-25), IPFD 10–12

Punjab

Jay (KPMR-522), Pant pea-42, KFP-103 (Shikha), Uttra (HFP8909), Aman ( IPF5-19)

Rajasthan

DMR-7 (Alankar), Pant Pea-42

Uttar Pradesh

Swati (KFPD-24), Malviya Matar-15 (HUDP-15), Vikas, Sapna (KPMR-1441), IPF 4-9

Uttarakhand

Pant Pea-14, Pant Pea-25, V L Matar -47

  1. Source: Seednet GOI, Min of Agri & FW & ICAR-IIPR, Kanpur, Dhall (2017)

1.4 Appendix II-B: World List of Recommended Varieties of Pisum sativum in some Producing Countries

Country

Recommended varieties

Czech Republic

Adept, Alan, Baryton, Bohatyr, CanisCarrera, Catania, Garde, Gotik, Grana, Hardy, Harnas, Herold, Jackpot, Janus, Kamelot, Komet, Lantra, Madonna, Menhir, Merkur, Olivin, Pegas, Power, Primus, Profi, Romeo, Sonet, Sponzor, Tempra, Terno, Tyrkys, Zekon

Egypt

Master B, Little Marvel, Lincoln, Luxer, Sugary, Sohag 1, Sohag 2, Ambassador, Hurst Greenshaft, Senator, Sugar Snap, Delikett, Victory Freezer

Ethiopia

Burkitu, Adet-1, Sefinesh, Gume, Tegegnech, Wolmera, Hassabe

Pakistan

Climax, Matar, Meteor, Climax, Greenfeast and Rondo

UK

Manager, Cascade, Capulet, Deity, Croft, Pastoral Swift, Venture, Madras, Salamanca

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Abdel-Hamid, A.M.E., Salem, K.F.M. (2021). Breeding Strategies of Garden Pea (Pisum sativum L.). In: Al-Khayri, J.M., Jain, S.M., Johnson, D.V. (eds) Advances in Plant Breeding Strategies: Vegetable Crops. Springer, Cham. https://doi.org/10.1007/978-3-030-66969-0_9

Download citation

Publish with us

Policies and ethics