Abstract
Garden pea (Pisum sativum L.), a member of the Fabaceae family, is one of the most important self-pollinating legume crops. Globally, the pea is an economic crop, utilized as food, feed and industrial uses. Garden pea is an annual winter-season crop grown around the world from winter to early summer depending on the country. Gene banks have conserved a large genetic resource collection of pea germplasm. Pisum harbors significant diversity based on biological status, geographical regions and morpho-agronomic traits. Introgression of novel alleles through crossing between various pea genetic resources, e.g. modern varieties with locally adapted varieties, enhances genetic diversity and preselection for traits of interest, which is required to ensure meaningful natural variation at the phenotypic level. Improving pea for biotic and abiotic stress tolerance traits, quality traits and yield attributes are the main objectives of breeders and geneticists. These can be achieved with genomics tools to augment traditional breeding programs. In this chapter, we will provide an overview of the origin of the pea, distribution, genetic resources, conservation, cultivation practices, recent developments in biotechnology and molecular genetics to improve traditional breeding methods.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abbo S, Gopher A, Lev-Yadun S (2017) The domestication of crop plants. In: Murray BG, Denis JM (eds) Encyclopedia of applied plant sciences, 2nd edn. Academic, Oxford, pp 50–54
Abdel-Hamid AME (2000) Some physiological and cytological studies on the effect of ions of some heavy metals on Pisum sativum plant. MSc thesis, Ain Shams University, Cairo, Egypt
Aburjai T, Natsheh FM (2003) Plants used in cosmetics, phytotherapy research. Phytother Res 17:987–1000. https://doi.org/10.1002/ptr.1363
Acquaah G (2012) Principles of plant genetics and breeding, 2nd edn. Wiley, Chichester. https://doi.org/10.1002/9781118313718
Adsule RN, Kadam SS (1989) Proteins. In: Salunkhe DK, Kadam SS (eds) Handbook of world food legumes, nutritional chemistry, processing technology and utilization, vol II. CRC Press, Boca Raton, pp 75–97
Ahloowalia B, Maluszynski M, Nichterlein K (2004) Global impact of mutation derived varieties. Euphytica 135(2):187–204
Aissani N, Anouar A, Souhail M, Hichem S (2019) Baker’s yeast separation effluent effect on pea (Pisum Sativum) germination and growth. Int J Biotechnol Bioeng 5:33–38
Ali Y, Coyne CJ, Grusak MA et al (2018) Genome-wide SNP identification, linkage map construction and QTL mapping for seed mineral concentrations and contents in pea (Pisum sativum L.). BMC Plant Biol 17:43. https://doi.org/10.1186/s12870-016-0956-4
Amarakoon R (2012) Study on amino acid content in selected varieties of Pisum sativum (peas) by ion-exchange chromatography. In: International conference on nutrition and food science, IPCBEE vol 39. IACSIT Press, Singapore
Ambrose M (2008) Garden pea. In: Prohens J, Nuez F (eds) Vegetables II, handbook of plant breeding, vol 2. Springer, New York, pp 3–26
Ambrose MJ, Maxted N, Coyne CJ et al (2011) Phylogeny, phylogeography and genetic diversity of the Pisum genus. Plant Genet Resour 9:4–18
Aney A (2013) Effect of gamma irradiation on yield attributing characters in two varieties of pea (Pisum sativum L.). Int J Life Sci 1(4):241–247
Annicchiarico P (2008) Adaptation of cool-season grain legume species across climatically contrasting environments of southern Europe. Agron J 100(6):1647–1654
Anonymous (1977) Manual on mutation breeding. IAEA, Vienna
Anonymous (1980) Induced mutations for the improvement of grain legume production. Report of a Research Co-ordination Meeting, Kuala Lumpur, Malaysia, IAEA-TECDOC-234
Anonymous (1982) Induced mutations for the improvement of grain legume production II. Report of a Research Co-ordination Meeting, Chiang Mai, Thailand, IAEA-TECOOC-260
Anonymous (1983) Induced mutations for the improvement of grain legume production III. Report of a Research Co-ordination Meeting, Seoul, Korea, IAEA-TECDOC-299
Anonymous (1984) Induced mutations for crop improvement in Latin America. Proc Regional Seminar, Lima, Peru, IAEA-TECDOC-305
Arcioni S, Damiani F, Mariani A, Pupilli F (1997) Somatic hybridization and embryo rescue for the introduction of wild germplams. In: McKersie BD, Brown DCW (eds) Biotechnology and the improvement of forage legumes. CAB International, Oxon, pp 61–89
Arnoldi A, Zanoni C, Lammi C, Boschin G (2015) The role of grain legumes in the prevention of hypercholesterolemia and hypertension. CRC Crit Rev Plant Sci 34:144–168. https://doi.org/10.1080/07352689.2014.897908
Aryamanesh N, Byrne O, Hardie DC et al (2012) Large-scale density-based screening for pea weevil resistance in advanced backcross lines derived from cultivated field pea (Pisum sativum) and Pisum fulvum. Crop Pasture Sci 63:612–618. https://doi.org/10.1071/CP12225
Aslam M, Arif M, Pandey KL et al (2006) Studies on in vitro regeneration in pea (Pisum sativum L.) var. Arkel. Biochem Cell Arch 6(1):111–116
Atkinson NJ, Lilley CJ, Urwin PE (2013) Identification of genes involved in the response to simultaneous biotic and abiotic stress. Plant Physiol 162:2028–2041. https://doi.org/10.1104/pp.113.222372
Aubert G, Morin J, Jacquin F et al (2006) Functional mapping in pea, as an aid to the candidate gene selection and for investigating synteny with the model legume Medicago truncatula. Theor Appl Genet 112:1024–1041. https://doi.org/10.1007/s00122-005-0205-y
Badr HM, Khalaf-Allah AM, Abdel-Al ZE (1975) Comparative effects of gamma radiation on productive characters of two pea cultivars (Pisum sativum L.) and their first-generation hybrid. Proceedings of the 1st Conference on Nuclear Science Application, Cairo
Bala M, Nag T, Mathur K et al (2010) In vitro callus induction for determination of lectin activity in pea (Pisum sativum L.). variety (AP-1). Rom Biotechnol Lett 15:5781–5787
Banniza S, Hashemi P, Warkentin TD et al (2005) The relationships among lodging, stem anatomy, degree of lignification, and resistance to mycosphaerella blight in field pea (Pisum sativum). Can J Bot 83(8):954–967
Bateson W (1902) Mendel’s principles of heredity. Qv part II with biographical notice of Mendel and translation of the paper on hybridization. Cambridge University Press, GP Putnam’s Sons, New York, pp 317–361
Ben-Ze’ev N, Zohary D (1973) Species relationships in the genus Pisum L. in Israel. Isr J Bot 22:73–91
Berjak P, Mycock DJ, Watt P et al (1995) Cryostorage of pea (Pisum sativum L.). In: Towill LE, Bajaj YPS (eds) Cryopreservation of plant germplasm I. Biotechnology in agriculture and forestry, vol 32. Springer, Berlin, pp 292–307
Blixt S (1970) Pisum. In: Frankel OH, Bennet E (eds) Genetic resources in plants: their exploration and conservation. International biological programme. Blackwell Publications, Oxford, pp 321–326
Blixt S (1972) Mutation genetics in Pisum. Agric Hortic Genet 30:1–293
Blixt S (1974) The pea. In: King RC (ed) Handbook of genetics, vol 2. Plenum Press, New York, pp 181–221
Bobille H, Fustec J, Robins RJ et al (2019) Effect of water availability on changes in root amino acids and associated rhizosphere on root exudation of amino acids in Pisum sativum L. Phytochemistry 161:75–85
Bohra A, Pandey MK, Jha UC et al (2014) Genomics-assisted breeding in four major pulse crops of developing countries: present status and prospects. Theor Appl Genet 127:1263–1291. https://doi.org/10.1007/s00122-014-2301-3
Bordat A, Savois V, Nicolas M et al (2011) Translational genomics in legumes allowed placing in silico 5460 unigenes on the pea functional map and identified candidate genes in Pisum sativum L. G3 (Bethesda) 1(2):93–103. https://doi.org/10.1534/g3.111.000349
Boutet G, Carvalho SA, Falque M et al (2016) SNP discovery and genetic mapping using genotyping by sequencing of whole genome genomic DNA from a pea RIL population. BMC Genomics 17:121. https://doi.org/10.1186/s12864-016-2447-2
Braun AC (1974) Biology of cancer. Addison-Wesley Pub Co, London
Carpenter MA, Goulden DS, Woods CJ et al (2018) Genomic selection for ascochyta blight resistance in pea. Front Plant Sci 9:1878. https://doi.org/10.3389/fpls.2018.01878
Ceyhan E, Avci MA (2015) Determination of some agricultural characters of developed pea (Pisum sativum L.) lines. Int J Biol Biomol Agric Food Biotechnol Eng 9(12):1235–1238
Chahal GS, Gosal SS (2002) Principles and procedures of plant breeding-biotechnological and conventional approaches. Narosa Publishing, New Delhi
Chen K, Wang Y, Zhang R et al (2019) CRISPR/Cas genome editing and precision plant breeding in agriculture. Annu Rev Plant Biol 70:667–697
Chimwamurombe PM, Khulbe RK (2011) Domestication. In: Pratap A, Kumar J (eds) Biology and breeding of food legumes. CABI, Cambridge, MA, pp 19–34
Clement SL, McPhee KE, Elberson LR, Evans MA (2009) Pea weevil, Bruchuspisorum L. (Coleoptera: Bruchidae), resistance in Pisum sativum x Pisum fulvum interspecific crosses. Plant Breed 128:478–485. https://doi.org/10.1111/j.1439-0523.2008.01603.x
Coakley SM, Scherm H, Chakraborty S (1999) Climate change and plant disease management. Annu Rev Phytopathol 37:399–426. https://doi.org/10.1146/annurev.phyto.37.1.399
Collard BCY, Mackill DJ (2008) Marker-assisted selection: an approach for precision plant breeding in the twenty-first century. Philos Trans R Soc Lond Ser B Biol Sci 363:557–572. https://doi.org/10.1098/rstb.2007.2170
Constabel F (1984) Fusion of protoplasts by polyethylene glycol (PEG). In: Vasil IK (ed) Cell culture and somatic cell genetics of plants: volume 1: laboratory procedures and their applications. Academic, Orlando, pp 414–422
Coyne CJ, Porter LD, Boutet G et al (2019) Confirmation of Fusarium root rot resistance QTL Fsp-Ps 2.1 of pea under controlled conditions. BMC Plant Biol 19(1):98
Cruz-Suarez LE, Ricque-Marie D, Tapia-Salazar M et al (2001) Assessment of differently processed feed pea (Pisum sativum) meals and canola meal (Brassica sp.) in diets for blue shrimp (Litopenaeus stylirostris). Aquaculture 196:87–104
Dahl WJ, Foster LM, Tyler RT (2012) Review of the health benefits of peas (Pisum sativum L.). Br J Nutr 108:S3–S10. https://doi.org/10.1017/s0007114512000852
Dalmais M, Schmidt J, Le Signor C et al (2008) UTILLdb, a Pisum sativum in silico forward and reverse genetics tool. Genome Biol 9:R43. https://doi.org/10.1186/gb-2008-9-2-r43
Davey JW, Hohenlohe PA, Etter PD et al (2011) Genome-wide genetic marker discovery and genotyping using next-generation sequencing. Nat Rev Genet 12(7):499–510
Davies DR, Berry GJ, Heath MC, Dawkins TCK (1985) Pea (Pisum sativum L.). In: Summerfield RJ, Roberts EH (eds) Grain legume crops. Williams Collins, London, pp 147–198
De Vilmorin P (1911) Fixite des races de froments. In: de Vilmorin P (ed) IVe Conference Internationale de Genetique-Paris, Comptes-rendus et Rapport, vol 1913. Masson, Paris, pp 312–316
Decarie J, Coyne C, Brumett S, Shultz J (2012) Additional pea EST-SSR markers for comparative mapping in pea (Pisum sativum L.). Plant Breed 131:222–226
Dhall RK (2017) Pea cultivation, Bulletin no PAU/2017/Elec/FB/E/29. Punjab Agricultural University, Ludhiana
Díez MJ, De la Rosa L, Martín I et al (2018) Plant genebanks: present situation and proposals for their improvement. The case of the Spanish network. Front Plant Sci 9:1794. https://doi.org/10.3389/fpls.2018.01794
Dirlewanger E, Isaac PG, Ranade S et al (1994) Restriction fragment length polymorphism analysis of loci associated with disease resistance genes and developmental traits in Pisum sativum L. Theor Appl Genet 88(1):17–27
Dita MA, Rispail N, Prats E et al (2006) Biotechnology approaches to overcome biotic and abiotic stress constraints in legumes. Euphytica 147(1–2):1–24
Duarte J, Rivière N, Baranger A et al (2014) Transcriptome sequencing for high throughput SNP development and genetic mapping in pea. BMC Genomics 15:126. https://doi.org/10.1186/1471-2164-15-126
Duc G, Messager J (1989) A mutagenesis of pea (Pisum sativum L.) and the isolation of mutants for nodulation and nitrogen-fixation. Plant Sci 60:207–213
Dumont E, Fontaine V, Vuylsteker C et al (2009) Association of sugar content QTL and PQL with physiological traits relevant to frost damage resistance in pea under field and controlled conditions. Theor Appl Genet 118:1561–1571. https://doi.org/10.1007/s00122-009-1004-7
Durieu P, Ochatt SJ (2000) Efficient intergeneric fusion of pea (Pisum sativum L.) and grass pea (Lathyrus sativus L.) protoplasts. J Exp Bot 51:1237–1242
Duveiller E, Singh RP, Nicol JM (2007) The challenges of maintaining wheat productivity: pests, diseases and potential epidemics. Euphytica 157:417–430. https://doi.org/10.1007/s10681-007-9380-z
Ellis THN (2011) Pisum. In: Kole C (ed) Wild crop relatives: genomic and breeding resources. Springer, Berlin, pp 237–248
Ellis TH, Turner L, Hellens RP et al (1992) Linkage maps in pea. Genet 130(3):649–663
Ezhova TA, Bagrova AM, Gostimskii SA (1985) Shoot formation in calluses from stem tips, epicotyls, internodes and leaves of different pea genotypes. Sov Plant Physiol 32:409–414
FAO/IAEA (2018) Manual on mutation breeding, 3rd edn. FAO, Rome
Fisher RA (1936) Has Mendel’s work been rediscovered? Ann Sci 1:115–137
Flavell A, Dumet D, Duc G et al (2011) Legume genetic resources: management, diversity assessment, and utilization in crop improvement. Euphytica 180:27–47
Fong SS, Burgard AP, Herring CD et al (2005) In silico design and adaptive evolution of Escherichia coli for production of lactic acid. Biotechnol Bioeng 91(5):643–648
Ford-Lloyd B, Jarvis A, Guarino L et al (2010) A global approach to crop wild relative conservation: securing the gene pool for food and agriculture. Kew Bull 65:561–576
Fowler C, Hodgkin T (2004) Plant genetic resources for food and agriculture: assessing global availability. Annu Rev Environ Resour 29:143–179. https://doi.org/10.1146/annurev.energy.29.062403.102203
Foyer CH, Lam HM, Nguyen HT et al (2016) Neglecting legumes has compromised human health and sustainable food production. Nat Plants 2(8). https://doi.org/10.1038/PLANTS2016.112
Frew TJ, Russell AC, Timmerman-Vaughan GM (2002) Sequence tagged site markers linked to the sbm1 gene for resistance to pea seedborne mosaic virus in pea. Plant Breed 121(6):512–516
Fujioka T, Fujita M, Iwamoto K (2000) Plant regeneration of Japanese pea cultivars by in vitro culture of immature leaflets. J Jpn Soc Hortic Sci 69:656–658
Gali KK, Liu Y, Sindhu A et al (2018) Construction of high-density linkage maps for mapping quantitative trait loci for multiple traits in field pea (Pisum sativum L.). BMC Plant Biol 18(1):172
Gali KK, Tar’an B, Madoui MA et al (2019) Development of a sequence-based reference physical map of pea (Pisum sativum L.). Front Plant Sci 10:323
Gelin O (1954) X-ray mutants in peas and vetches. Acta Agric Scand 4:558–568
Gelin O (1955) Studies on the X-ray mutation stral pea. Agric Hortic Genet 13:183–193
Gepts P (2006) Plant genetic resources conservation and utilization. Crop Sci 46:2278–2292. https://doi.org/10.2135/cropsci2006.03.0169gas
Ghafoor A, McPhee K (2012) Marker assisted selection (MAS) for developing powdery mildew resistant pea cultivars. Euphytica 186:593–607. https://doi.org/10.1007/s10681-011-0596-6
Ghafoor AB, Ahmad ZA, Anwar RA (2005) Genetic diversity in Pisum sativum and a strategy for indigenous biodiversity conservation. Pak J Bot 37(1):71–77
Ghanem SA, El-Bahr MK, Saker MM, Badr A (1996) In vitro studies on pea (Pisum sativum L.): I. Callus formation, regeneration and rooting. Plant Biosyst 130:695–705. https://doi.org/10.1080/11263509609438342
Gibson G, Muse SV (2009) A primer of genome science, 3rd edn. Sinauer Associates, Sunderland
Gong YM, Xu SC, Mao WH et al (2010) Developing new SSR markers from ESTs of pea (Pisum sativum L.). J Zhejiang Univ Sci B 11(9):702–707
Govorov L (1937) Pisum. In: Vavilov N, Wulff E (eds) Flora of cultivated plants. IV. Grain Leguminosae. State Agricultural Publishing Company, Moscow, pp 231–336
Grant J, Cooper P (2006) Peas (Pisum sativum L.). In: Wang K (ed) Methods in molecular biology, vol 343, agrobacterium protocols 2/e vol 1. Humana Press, Totwa, pp 337–346
Grant JE, Cooper PA, McAra AE, Frew TJ (1995) Transformation of peas (Pisum sativum L.) using immature cotyledons. Plant Cell Rep 15(3–4):254–258
Grant JE, Thomson LMJ, Pither-Joyce MD et al (2003) Influence of Agrobacterium tumefaciens strain on production of transgenic peas (Pisum sativum L.). Plant Cell Rep 21:1207–1210
Gritton ET (1986) Pea breeding. In: Bassett MJ (ed) Breeding vegetable crops. AVI, Westport, pp 283–319
Guindon MF, Eugenia M, Aldana Z et al (2016) Evaluation of SRAP markers for mapping of Pisum sativum L. Crop Breed Appl Biotechnol 16:182–188
Hall C, Hillen C, Garden-Robinson J (2017) Compositional, nutritional value, and health benefits of pulses. Cereal Chem 94:11–31. https://doi.org/10.1094/CCHEM-03-16-0069-FI
Hamon C, Baranger A, Coyne CJ et al (2011) New consistent QTL in pea associated with partial resistance to Aphanomyces euteiches in multiple field and controlled environments from France and the United States. Theor Appl Genet 123:261–281
Hanci F (2019) Genetic variability in peas (Pisum sativum L.) from Turkey assessed with molecular and morphological markers. Folia Hortic 31(1):101–116
Hanocq E, Jeuffroy MH, Lejeune-Henaut I, Munier-Jolain N (2009) Construire des idéotypes pour des systèmes de culture variésen pois d’hiver. Innov Agron 7:14–28
Harlan JR (1992) Crops and man. American Society of Agronomy, Madison
Harlan JR, de Wet JMJ, Stemler ABL (1976) Plant domestication and indigenous African agriculture. In: Harlan JR, de Wet JMJ, Stemler ABL (eds) Origins of African plant domestication. Mouton, The Hague, pp 3–19
Haskins RH, Kartha KK (1980) Freeze preservation of pea meristems: cell survival. Can J Bot 58:833–840
Haussmann BG, Parzies HK, Prester T et al (2004) Plant genetic resources in crop improvement. Plant Genet Resour 2(1):3–21
Hedley CL (2001) Carbohydrates in grain legume seeds. Improving nutritional quality and agronomic characteristics. CABI Publishing, Wallingford, pp 1–13
Hofer J, Turner L, Moreau C et al (2009) Tendril-less regulates tendril formation in pea leaves. Plant Cell 21:420–428
Holdsworth W, Gazave E, Cheng P et al (2017) A community resource for exploring and utilizing genetic diversity in the USDA pea single plant plus collection. Hort Res 4:17017. https://doi.org/10.1038/hortres.2017.17
Howard IIITP, Hayward AP, Tordillos A et al (2014) Identification of the maize gravitropism gene lazy plant1 by a transposon-tagging genome resequencing strategy. PLoS One 9(1):e87053
Huang J, Li J, Zhou J et al (2018) Identifying a large number of high-yield genes in rice by pedigree analysis, whole-genome sequencing, and CRISPR-Cas9 gene knockout. PNAS 115:E7559–E7567
Hussein HAS, Selim AR, El-Shawaf IIS (1974) EMS and gamma rays induced mutations in Pisum sativum. I. Effects on the frequency and spectrum of M2-chlorophyll mutation. Egypt J Genet Cytol 3:106–116
Hussey G, Gunn HV (1984) Plant production in pea (Pisum sativum L. cvs Puget and Upton) from long term callus with superficial meristems. Plant Sci Lett 37:143–148
Jackson JA, Hobbs SLA (1990) Rapid multiple shoot production from cotyledonary node explant of pea (Pisum sativum L.). In Vitro Cell Dev Biol 26:835–838
Jacobsen HJ, Kysely W (1984) Induction of somatic embryos in pea, Pisum sativum L. Plant Cell Tissue Organ Cult 3:319–324
Jain S, Weeden NF, Porter LD et al (2013) Finding linked markers to En for efficient selection of pea enation mosaic virus resistance in pea. Crop Sci 53:2392–2398. https://doi.org/10.2135/cropsci2013.04.0211
Jang TH, Park SC, Yang JH et al (2017) Cryopreservation and its clinical applications. Integr Med Res 6(1):12–18
Jantama K, Haupt MJ, Svoronos SA et al (2008) Combining metabolic engineering and metabolic evolution to develop nonrecombinant strains of Escherichia coli C that produce succinate and malate. Biotechnol Bioeng 99(5):1140–1153
Jarso M, Keneni G, Gorfu D (2009) Field pea improvement through hybridization, Technical Manual 22. Ethiopian Institute of Agricultural Research (EIAR), Addis Ababa
Jha AB, Arganosa G, Tar’an B et al (2013) Characterization of 169 diverse pea germplasm accessions for agronomic performance, Mycosphaerella blight resistance and nutritional profile. Genet Resour Crop Evol 60:747–761
Jha AB, Gali KK, Tar’an B, Warkentin TD (2017) Fine mapping of QTLs for ascochyta blight resistance in pea using heterogeneous inbred families. Front Plant Sci 8:765. https://doi.org/10.3389/fpls.2017.00765
Jing R, Vershinin A, Grzebyta J et al (2010) The genetic diversity and evolution of field pea (Pisum) studied by high throughput retrotransposon-based insertion polymorphism (RBIP) marker analysis. BMC Evol Biol 1:44
Kahlon JG, Jacobsen H, Chatterton S et al (2018) Lack of efficacy of transgenic pea (Pisum sativum L.) stably expressing antifungal genes against Fusarium spp. in three years of confined field trials. GM Crops Food 9:90–108. https://doi.org/10.1080/21645698.2018.1445471
Kartha KK (1981) Meristem culture and cryopreservation-methods and applications. In: Thorpe TA (ed) Plant tissue culture, methods and applications in agriculture. Academic, New York, pp 181–212
Kartha KK, Engelmann F (1994) Cryopreservation and germplasm storage. In: Vasil IK, Thorpe TA (eds) Plant cell and tissue culture. Springer, Dordrecht
Kaur S, Pembleton LW, Cogan NO et al (2012) Transcriptome sequencing of field pea and Faba bean for discovery and validation of SSR genetic markers. BMC Genomics 13:104. https://doi.org/10.1186/1471-2164-13-104
Kharkwal MC, Cagirgan MI, Toker C et al (2010) Legume mutant varieties for food, feed and environmental benefits. Proceedings of the 5th international food legumes research conference (IFLRC) & 7th European conference on grain legumes (AEP VII), Antalya, Turkey, 26–30 April 2010
Kharkwal M, Pandey R, Pawar S (2004) Mutation breeding for crop improvement. In: Jain HK, Kharkwal MC (eds) Plant breeding – mendelian to molecular approaches. Narosa Publishing, New Delhi, pp 601–645
Khodapanahi E, Lefsrud M, Orsat V et al (2012) Study of pea accessions for development of an oilseed pea. Energies 5:3788–3802
Khoury CK, Bjorkmann AD, Dempewolf H et al (2014) Increasing homogeneity in global food supplies and the implications for food security. Proc Natl Acad Sci U S A 111:4001–4006. https://doi.org/10.1073/pnas.1313490111
Khoury CK, Achicanoy HA, Bjorkman AD et al (2016) Origins of food crops connect countries worldwide. Proc Biol Sci 283(1832):2060792. https://doi.org/10.1098/rspb.2016.0792
Kirakosyan A, Kaufman PB (2009) Recent advances in plant biotechnology. Springer, Dordrecht
Komor AC, Kim YB, Packer MS et al (2016) Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533:420–424
Kuchel H, Langridge P, Mosionek L et al (2006) The genetic control of milling yield, dough rheology and baking quality of wheat. Theor Appl Genet 112(8):1487–1495. https://doi.org/10.1007/s00122-006-0252-z
Kulaeva OA, Zhernakov AI, Afonin AM et al (2017) Pea marker database (PMD) – a new online database combining known pea (Pisum sativum L.) gene-based markers. PLoS One 12(10):e0186713. https://doi.org/10.1371/journal.pone.0186713
Kumar A, Mishra MN, Kharkwal MC (2007) Induced mutagenesis in black gram (Vigna mungo L. Hepper). Indian J Genet 67(1):41–46
Kumar PR, Kumar M, Dogra RK, Bharat NK (2015) Variability and character association studies in garden pea (Pisum sativum var. hortense L.) during winter season at mid hills of Himachal. Legum Res 38(2):164–168
Kuo CY (1999) Development of a new green pea variety, Taichung 14. Bulletin of Trachung District Agricultural Improvement Station 58:21–32
Kysely W, Myers JR, Lazzeri RA et al (1987) Plant regeneration via somatic embryogenesis in pea (Pisum sativum L.). Plant Cell Rep 6:305–308
Lakić Ž, Stanković S, Pavlović S et al (2019) Genetic variability in quantitative traits of field pea (Pisum sativum L.) genotypes. Czech J Genet Plant Breed 55:1–7
Lehminger-Mertens R, Jacobsen HJ (1989) Protoplast regeneration and organogenesis from pea protoplasts. In Vitro Cell Dev Biol 25:571–574
Leonforte A, Sudheesh S, Cogan NO et al (2013) SNP marker discovery, linkage map construction and identification of QTLs for enhanced salinity tolerance in field pea (Pisum sativum L.). BMC Plant Biol 13:161. https://doi.org/10.1186/1471-2229-13-161
Leppyanen IV, Kirienko AN, Dolgikh EA (2019) Agrobacterium rhizogenes-mediated transformation of Pisum sativum L. roots as a tool for studying the mycorrhizal and root nodule symbioses. PeerJ 7:e6552
Ljuština M, Mikić A (2010) A brief review on the early distribution of pea (Pisum sativum L.) in Europe. Field Veg Crop Res 47:457–460
Lyanguzova IV (1999) Effects of nickel and copper on bilberry seed germination and seedling development. Russ J Plant Physiol 46:431–432
Ma Y, Coyne CJ, Grusak MA et al (2017) Genome-wide SNP identification, linkage map construction and QTL mapping for seed mineral concentrations and contents in pea (Pisum sativum L.). BMC Plant Biol 17:43. https://doi.org/10.1186/s12870-016-0956-4
Mahalingam R (2015) Consideration of combined stress: a crucial paradigm for improving multiple stress tolerance in plants. In: Mahalingam R (ed) Combined stresses in plants. Springer, Cham, pp 1–25. https://doi.org/10.1007/978-3-319-07899-11
Malmberg RL (1979) Regeneration of whole plants from callus culture of diverse genetic lines of Pisum sativum L. Planta 146:243–244
Mandal BB (1995) Methods of in vitro conservation: principles, prospects and constraints. In: Rana RS, Chandel KPS, Bhat SR et al (eds) Plant germplasm conservation: biotechnological approaches. National Bureau of Plant Genetic Resources, ICAR, New Delhi, pp 83–87
Mandal BB, Tyagi RK, Pandey R et al (2000) In vitro conservation of germplasm of agri-horticultural crops at NBPGR: an overview. In: Razdan MK, Cocking EC (eds) Conservation of plant genetic resources in vitro. Vol 2: application and limitations. Science Publishers, Enfield, pp 297–307
Marza F, Bai GH, Carver BF, Zhou WC (2005) Quantitative trait loci for yield and related traits in the wheat population Ning7840 × Clark. Theor Appl Genet 112(4):688–698. https://doi.org/10.1007/s00122-005-0172-3
Maxted N, Ambrose M (2001) Peas (Pisum L.). In: Maxted N, Bennett SJ (eds) Plant genetic resources of legumes in the Mediterranean, Current plant science and biotechnology in agriculture, vol 39. Springer, Dordrecht, pp 181–190
McAdam EL, Reid JB, Foo E (2018) Gibberellins promote nodule organogenesis but inhibit the infection stages of nodulation. J Exp Bot 69:2117–2130
McAdams S, Ratnasabapathi D, Smith RA (1991) Influence of days of culture on cryoprotectant-supplemented medium and of terminal freezing temperature on the survival of cryopreserved pea shoot tips. Cryobiology 28:288–293
McCallum J, Timmerman-Vaughan GM, Frew T, Russell AC (1997) Biochemical and genetic linkage analysis of green seed color in field pea. J Am Soc Hortic Sci 122:218–225
McClendon MT, Inglis DA, McPhee KE, Coyne CJ (2002) DNA markers linked to Fusarium wilt race 1 resistance in pea. J Am Soc Hortic Sci 127(4):602–607
McDonald A, Riha S, DiTommasob A, DeGaetanoa A (2009) Climate change and the geography of weed damage: analysis of U.S. maize systems suggests the potential for significant range transformations. Agric Ecosyst Environ 130:131–140. https://doi.org/10.1016/j.agee.2008.12.007
Messiaen CM, Seif AA, Jarso M, Keneni G (2006) Pisum sativum L. In: Brink M, Belay G (eds) Plant resources of tropical Africa. PROTA, Wageningen
Mikić A, Mihailović V, Duc G et al (2007) Evaluation of winter protein pea cultivars in the conditions of Serbia. Zbornik Radova Period Sci Res Field Veg Crops 44:107–112
Miles CA, Furman BJ, Ambrose MJ et al (2011) Genetic adjustment to changing climates: pea. In: Hall AE, Lotze-Campen H, Hatfield JL et al (eds) Crop adaptation to climate change. Wiley Blackwell, Chichester
Mishra A, Choudhuri MA (1999) Monitoring of phytotoxicity of lead and mercury from germination and early seedling growth indices in two rice cultivars. Water Air Soil Pollut 114:339–346
Mital RK, Verma PS (1991) Selection indices in table peas (Pisum sativum Linn). Indian J Genet 51(1):130–133
Mittler R (2006) Abiotic stress, the field environment and stress combination. Trends Plant Sci 11:15–19. https://doi.org/10.1016/j.tplants.2005.11.002
Mroginski LA, Kartha KK (1981) Regeneration of pea (Pisum sativum L. cv. Century) plants by in vitro culture of immature leaflets. Plant Cell Rep 1:64–66
Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15(3):473–497
Narsai R, Wang C, Chen J et al (2013) Antagonistic, overlapping and distinct responses to biotic stress in rice (Oryza sativa) and interactions with abiotic stress. BMC Genomics 14:93. https://doi.org/10.1186/1471-2164-14-93
Natali L, Cavallini A (1987a) Nuclear cytology of callus and plantlets regenerated from pea (Pisum sativum L.) meristems. Protoplasma 143(2–3):121–125
Natali L, Cavallini A (1987b) Regeneration of pea (Pisum sativum L.) plantlets by in vitro culture of immature embryos. Plant Breed 99(2):172–176
Navrátilová A, Neumann P, Macas J (2005) Long-range organization of plant satellite repeats investigated using strand-specific FISH. Cytogenet Genome Res 109(1–3):58–62
Neumann P, Pozárková D, Vrána J et al (2002) Chromosome sorting and PCR-based physical mapping in pea (Pisum sativum L.). Chromosom Res 10:63–71
Nielsen J (2005) Biotechnology for the future. In: Scheper T (ed) Advances in biochemical engineering/biotechnology. Springer, Heidelberg, pp 1–17
Nielsen SVS, Poulsen GB, Larsen ME (1991) Regeneration of shoot from pea (Pisum sativum) hypocotyl explants. Physiol Plant 82(1):99–102
Nilsson J, Stegmark R, Akesson B (2004) Total antioxidant capacity in different pea (Pisum sativum) varieties after blanching and freezing. Food Chem 86:501–507
Nyarai-Horvath F, Szalai T, Kadar I, Csatho P (1997) Germination characteristics of pea seeds originating from a field trial treated with different levels of harmful elements. Acta Agron Hung 45:147–154
Obroucheva NV, Bystrova EI, Ivanov VB et al (1998) Root growth responses to lead in young maize seedlings. Plant Soil 200:55–61
Pandey P, Ramegowda V, Senthil-Kumar M (2015) Shared and unique responses of plants to multiple individual stresses and stress combinations: physiological and molecular mechanisms. Front Plant Sci 6:723. https://doi.org/10.3389/fpls.2015.00723
Patterson DT (1995) Effects of environmental stress on weed/crop interaction. Weed Sci 43:483–490
Paul AA, Southgate DAT (1988) In: McCance RA, Widdwson EM (eds) The composition of foods, 4th edn. Elsevier, Amsterdam, pp 175–177
Peters K, Breitsameter L, Gerowitt B (2014) Impact of climate change on weeds in agriculture: a review. Agric Sustain Dev 34:707–721. https://doi.org/10.1007/s13593-014-0245-2
Pevsner J (2009) Bioinformatics and functional genomics, 2nd edn. Wiley-Blackwell, Hoboken
Phillips DA (1980) Efficiency of symbiotic nitrogen fixation in legumes. Annu Rev Plant Physiol 31:29–49
Pniewski T, Kapusta J (2005) Efficiency of transformation of Polish cultivars of pea (Pisum sativum L.) with various regeneration capacities by using hyper virulent Agrobacterium tumefaciens strains. J Appl Genet 46:139–147
Pniewsky T, Wachowiak J, Kapusta J, Legocki A (2003) Organogenesis and long-term micropropagations polish pea cultivars. Acta Soc Bot Pol 72:295–302
Power JB, Cummins SE, Cocking EC (1970) Fusion of isolated plant protoplasts. Nature 225(5237):1016–1018
Prasad PV, Pisipati SR, Momcilovic I, Ristic Z (2011) Independent and combined effects of high temperature and drought stress during grain filling on plant yield and chloroplast EF-Tu expression in spring wheat. J Agron Crop Sci 197:430–441. https://doi.org/10.1111/j.1439-037X.2011.00477.x
Prasch CM, Sonnewald U (2013) Simultaneous application of heat, drought, and virus to Arabidopsis plants reveals significant shifts in signaling networks. Plant Physiol 162:1849–1866. https://doi.org/10.1104/pp.113.221044
Puonti-Kaerlas J, Eriksson T, Engstrom P (1990) Production transgenic pea (Pisum sativum L.) plants by Agrobacterium tumefaciens mediated gene transfer. Theor Appl Genet 80:246–252
Qasim M, Zubair M, Wadan D (2002) Evaluation of exotic cultivars of pea in swat valley. Sarhad J Agric 17(4):545–548
Rajput V, Singh NP (2010) Studies on in vitro regeneration and direct organogenesis in pea (Pisum sativum L.). Indian J Plant Physiol 15:246–249
Ramegowda V, Senthil-Kumar M (2015) The interactive effects of simultaneous biotic and abiotic stresses on plants: mechanistic understanding from drought and pathogen combination. J Plant Physiol 176:47–54. https://doi.org/10.1016/j.jplph.2014.11.008
Rana JC, Rana M, Sharma V et al (2017) Genetic diversity and structure of pea (Pisum sativum L.) germplasm based on morphological and SSR markers. Plant Mol Biol Rep 35(1):118–129
Reid JB, Ross JJ (2011) Mendel’s genes: toward a full molecular characterization. Genetics 189:3–10
Rogers SO, Bendich AJ (1985) Extraction of DNA from milligram amounts of fresh, herbarium and mummified plant tissues. Plant Mol Biol 5:69–76. https://doi.org/10.1007/BF00020088. PMID: 24306565
Rubluo A, Kartha KK, Mroginski LA, Dyck S (1984) Plant regeneration from pea leaf lets cultured in vitro and genetic stability of regeneration. J Plant Physiol 117:119–130
Sagan M, Duc G (1996) Sym28 and Sym29, two new genes involved in regulation of nodulation in pea (Pisum sativum L.). Symbiosis 20:229–245
Sagan M, Huguet T, Duc G (1994) Phenotypic characterization and classification of nodulation mutants of pea (Pisum sativum L.). Plant Sci 100:59–70
Sagar P, Chandra S (1977) Heterosis and combining ability in urdbean. Indian J Genet Plant Breed 37(3):420–425
Samatadze TE, Zelenina DA, Shostak NG et al (2008) Comparative genome analysis in pea Pisum sativum L. varieties and lines with chromosomal and molecular markers. Russ J Genet 44(12):1424
Samatadze TE, Badaeva ED, Popov KV et al (2018) “Space” pea Pisum sativum L. and wheat Triticum compactum host. Plants as objects of cytogenetic studies. Biol Bull 45:528–536
Sanchez EA, Mosquera T (2006) Establishing a methodology for inducing the regeneration of pea (Pisum sativum L.) explants, ‘Santa Isabel’ variety. Agron Colomb 24:17–27
Scherm H, Coakley SM (2003) Plant pathogens in a changing world. Australas Plant Pathol 32:157–165. https://doi.org/10.1071/AP03015
Schiltz S, Gallardo K, Huart M et al (2004) Proteome reference maps of vegetative tissues in pea. An investigation of nitrogen mobilization from leaves during seed filling. Plant Physiol 135:2241–2260
Schroeder HE, Schotz AH, Wardley-Richardson T (1993) Transformation and regeneration of two cultivars of pea (Pisum sativum L.). Plant Physiol 101(3):751–757
Sharma R, Kaushal RP (2004) Generation and characterization of pea (Pisum sativum L.) somaclones for resistance to Aschochyta blight and powdery mildew. Indian J Biotechnol 3:400–408
Sharma B, Kharkwal MC (1983) Mutation studies and mutation breeding in grain legumes. In: Induced mutations for improvement of grain legume production III. IAEA, TECDOC, Vienna, pp 65–75
Sharma A, Plaha P, Rathour R et al (2009) Induced mutagenesis for improvement of garden pea. Int J Veg Sci 16:60–72. https://doi.org/10.1080/19315260903195634
Shimatani Z, Kashojiya S, Takayama M et al (2017) Targeted base editing in rice and tomato using a CRISPR-Cas9 cytidine deaminase fusion. Nat Biotechnol 35:441–443
Shubha K, Kaur V, Dhar S (2019) Genetic diversity assessment in garden pea (Pisum sativum L.) germplasm through principal component analysis. Int J Chem Stud 7(1):482–486
Simakov GA (1989) Collection of pea varieties in breeding for yield. SelektsiyaiSemenovdstvo (Moskva) 6:11–13
Sindhu A, Ramsay L, Sanderson LA et al (2014) Gene-based SNP discovery and genetic mapping in pea. Theor Appl Genet 127:2225–2241. https://doi.org/10.1007/s00122-014-2375-y
Singh M, Singh B, Dev P, Kumar V (2017) Study of heterosis for yield and its related traits in table pea (Pisum sativum. spp. Hortense L). J Pharmacogn Phytochem SP 1:470–473
Singh S, Singh B, Sharma VR et al (2019) Character association and path analysis in diverse genotypes of pea (Pisum sativum L.). Int J Curr Microbiol App Sci 8(2):706–713
Sinjushin A (2013) Mutation genetics of pea (Pisum sativum L.): what is done and what is left to do. Ratarstvo i povrtarstvo 50(2):36–43
Smýkal P (2014) Pea (Pisum sativum L.) in biology prior and after Mendel’s discovery. Czech J Genet Plant Breed 50:52–64
Smýkal P, Kenicer G, Flavell AJ et al (2011) Phylogeny, phylogeography and genetic diversity of the Pisum genus. Plant Genet Resour 9(1):4–18
Smýkal P, Aubert G, Burstin J et al (2012) Pea (Pisum sativum L.) in the genomic era. Agronomy 2:74–115
Smýkal P, Coyne C, Redden R, Maxted NP (2013) Pea. In: Singh M, Upadhyaya H, Bisht IS (eds) Genetic and genomic resources for grain legume improvement. Elsevier, London, pp 41–80
Smýkal P, Coyne CJ, Ambrose MJ et al (2015) Legume crops phylogeny and genetic diversity for science and breeding. Crit Rev Plant Sci 34(1–3):43–104. https://doi.org/10.1080/07352689.2014.897904
Smýkal P, Rajeev KV, Vikas KS et al (2016) From Mendel’s discovery on pea to today’s plant genetics and breeding. Theor Appl Genet 129(12):2267–2280
Solanki IS, Sharma B (2002) Induced polygenic variability in different groups of mutagenic damage in lentil (Lens culinaris Medik.). Indian J Genet 62(2):135–139
Sreedevi TK, Hoisington DA, Kannan S et al (2009) AFLP-based molecular characterization of an elite germplasm collection of Jatropha curcas L., a biofuel plant. Plant Sci 176:505–513
Surma M, Adamski T, Święcicki W et al (2013) Preliminary results of in vitro culture of pea and lupin embryos for the reduction of generation cycles in single seed descent technique. Acta Soc Bot Pol 82(3):231–236
Suzuki N, Rivero RM, Shulaev V et al (2014) Abiotic and biotic stress combinations. New Phytol 203:32–43. https://doi.org/10.1111/nph.12797
Švábová L, Griga M (2008) The effect of cocultivation treatments on transformation efficiency in pea (Pisum sativum L.). Plant Cell Tissue Organ Cult 95(3):293–304
Tapingkae T, Zulkarnain Z, Kawaguchi M et al (2012) Somatic (asexual) procedures (haploids, protoplasts, cell selection) and their applications. In: Altman A, Hasegawa PM (eds) Plant biotechnology and agriculture-prospects for the 21st century. Academic, Cambridge, MA, pp 141–162
Taran B, Warkentin T, Somers DJ et al (2004) Identification of quantitative trait loci for grain yield, seed protein concentration and maturity in field pea (Pisum sativum). Euphytica 136:297–306
Tayeh N, Aluome C, Falque M et al (2015) Development of two major resources for pea genomics: the genopea 13.2K SNP array and a high-density, high-resolution consensus genetic map. Plant J 84:1257–1273. https://doi.org/10.1111/tpj.13070
Tetu T, Sangwan RS, Noseel BS (1990) Direct somatic embryogenesis and organogenesis in cultured immature zygotic embryo of pea. J Plant Physiol 137(1):102–109
Timmerman-Vaughan GM, Frew TJ, Miller AL et al (1993) Linkage mapping of sbm-1, a gene conferring resistance to pea seed-borne mosaic virus, using molecular markers in Pisum sativum. Theor Appl Genet 85(5):609–615
Timmerman-Vaughan GM, Frew TJ, Weeden NF et al (1994) Linkage analysis of er-1, arecessive Pisum sativum gene for resistance to powdery mildew fungus (Erysiphe pisi D.C.). Theor Appl Genet 88:1050–1055
Timmerman-Vaughan GM, McCallum JA, Frew TJ et al (1996) Linkage mapping of quantitative trait loci controlling seed weight in pea. Theor Appl Genet 93:431–439
Timmerman-Vaughan GM, Russell AC, Hill A et al (1997) DNA markers for disease resistance breeding in peas (Pisum sativum L.). Proc 50th N Z Plant Prot Conf 50:314–315
Timmerman-Vaughan GM, Pither-Joyce MD, Cooper PA et al (2001) Partial resistance of transgenic peas to alfalfa mosaic virus under greenhouse and field conditions. Crop Sci 41:846–853. https://doi.org/10.2135/cropsci2001.413846x
Tiwari KR, Penner GA, Warkentin TD (1998) Identification of AFLP markers for the powdery mildew resistance gene er-2 in pea. Genome 41:440–444
Tzitzikas EN, Bergervoet M, Raemakers K et al (2004) Regeneration of pea (Pisum sativum L.) by a cyclic organogenesis system. Plant Cell Rep 23:453–460
Ubayasena L, Bett K, Tar’an B, Warkentin T (2011) Genetic control and identification of QTLs associated with visual quality traits of field pea (Pisum sativum L.). Genome 54(4):261–272
Valerio M, Lovelli S, Perniola M et al (2013) The role of water availability on weed-crop interactions in processing tomato for southern Italy. Acta Agric Scand Sect B 63:62–68. https://doi.org/10.1080/09064710.2012.715184
Van de Wouw M, Kik C, van Hintum T et al (2009) Genetic erosion in crops: concept, research results and challenges. Plant Genet Resour 8:1–15. https://doi.org/10.1017/S1479262109990062
Varshney RK, Kudapa H, Pazhamala L et al (2015) Translational genomics in agriculture: some examples in grain legumes. CRC Crit Rev Plant Sci 34:169–194. https://doi.org/10.1080/07352689.2014.897909
Vavilov NI (1992) Origin and geography of cultivated plants. In: Love D (Transl) (ed) The phystogeographical basis for plant breeding. Cambridge University Press, Cambridge, pp 316–366
Vershinin AV, Allnutt TR, Knox MR et al (2003) Transposable elements reveal the impact of introgression, rather than transposition, in Pisum diversity, evolution, and domestication. Mol Biol Evol 20:2067–2075
Vignesh M, Shanmugavadivel PS, Kokiladevi E (2011) Molecular markers in pea breeding – a review. Agric Rev 32(3):183–192
Vijay KS, Datta S, Basfore S (2018) Performance of garden pea (Pisum sativum var hortense L.) varieties under conventional and organic nutrient sources under sub-Himalayan foothills of West Bengal, India. Int J Curr Microbiol App Sci 7(7):3231–3241
Vikas S, Singh P, Singh R (1996) Variability and inheritance of some quantitative characters in pea (Pisum sativum L.). Ann Biol (Ludhiana) 12(1):34–38
Villani PJ, DeMason DA (2000) Roles of the Af and Tl genes in pea leaf morphogenesis: shoot ontogeny and leaf development in the heterozygotes. Ann Bot 85:123–135
Vilmorin PD, Bateson W (1911) A case of gametic coupling in Pisum. Proc R Soc B Biol Sci 84:9–11. https://doi.org/10.1098/rspb.1911.0040
Wang Z, Luo Y, Li X et al (2008) Genetic control of floral zygomorphy in pea (Pisum sativum L.). Proc Natl Acad Sci U S A 105:10414–10419
Warkentin TD, Smykal P, Coyne CJ et al (2015) Pea (Pisum sativum L.). In: De Ron AM (ed) Grain legumes, Series handbook of plant breeding. Springer, New York, pp 37–83
Weeden NF (2018) Domestication of pea (Pisum sativum L.): the case of the abyssinian pea. Front Plant Sci 9:515. https://doi.org/10.3389/fpls.2018.00515
Weeden NF, Provvidenti R, Marx GA (1984) An isozyme marker for resistance to bean yellow mosaic virus in Pisum sativum. J Hered 75:411–412
Weeden NF, Ellis THN, Timmerman-Vaughan GM et al (1998) A consensus linkage map for Pisum sativum. Pisum Genet 30:1–3
Weldon WFR (1902) Mendel’s laws of alternative inheritance in peas. Biometrika 1:228–254
Wellensiek SJ (1925) Pisum-crosses I. Genetica 7(1):1–64
Weller JL, Liew LC, Hecht VFG et al (2012) A conserved molecular basis for photoperiod adaptation in two temperate legumes. Proc Natl Acad Sci U S A 109:21158
Yamashita K (1980) Origin and dispersion of wheats with special reference to peripheral diversity. Z Pflanzenzüchtg 84:122–132
Yang T, Fang L, Zhang X et al (2015) High-throughput development of SSR markers from pea (Pisum sativum L.) based on next generation sequencing of a purified Chinese commercial variety. PLoS One 10:e0139775. https://doi.org/10.1371/journal.pone.0139775
Zelenov AN, Shchetinin VY, Sobolev DV (2008) Breeding value of pea form with dissected leaflet. Agrarnayanauka 2:19–20. (In Russian)
Zeven AC, De Wet JMJ (1983) Dictionary of cultivated plants and their regions of diversity: excluding most ornamentals, forest trees and lower plants. Landbouwhogeschool, Wageningen
Zhang C, Tar’an B, Warkentin T et al (2006) Selection for lodging resistance in early generations of field pea by molecular markers. Crop Sci 46:321–329
Zhang H, Mittal N, Leamy LJ, Barazani O, Song BH (2016) Back into the wild-Apply untapped genetic diversity of wild relatives for crop improvement. Evol Appl 10(1):5–24. https://doi.org/10.1111/eva.12434
Zhernakov A, Rotter B, Winter P et al (2017) Massive analysis of cDNA ends (MACE) for transcript-based marker design in pea (Pisum sativum L.). Genomics Data 11:75–76. https://doi.org/10.1016/j.gdata.2016.12.004. PMID: 28050346
Zhihui S, Tzitzikas M, Raemakers K, Zhengqiang M et al (2009) Effect of TDZ on plant regeneration from mature seeds in pea (Pisum sativum). In Vitro Cell Dev Biol 45:776–782
Zhuang X, McPhee KE, Coram TE et al (2013) Development and characterization of 37 novel EST-SSR markers in Pisum sativum (Fabaceae). Appl Plant Sci 1:1200249. https://doi.org/10.3732/apps.1200249
Ziska LH, Tomecek MB, Gealy DR (2010) Evaluation of competitive ability between cultivated and red weedy rice as a function of recent and projected increases in atmospheric CO2. Agron J 102:118–123. https://doi.org/10.2134/agronj2009.0205
Zohary D, Hopf M (2000) Domestication of plants in the old world, 3rd edn. University Press, Oxford, pp 105–107
Zong X, Guan JP, Wang SM et al (2008) Genetic diversity and core collection of alien Pisum sativum L. germplasm. Acta Agron Sin 34:1518–1528
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Appendices
Appendices
1.1 Appendix I-A: Major World Institutions Holding Pisum Germplasm
Country/Continent | FAO Inst. code | Institute | Number of accessions |
---|---|---|---|
Africa | IBCR | Institute of Biodiversity Conservation, Addis Ababa, Ethiopia | 1600 |
Australia | AFTC | Australian Temperate Field Crop Collection, Horsham, England | 6567 |
Bulgaria | SAD | Institute of Plant Introduction and Genetic Resources, Sadovo, Bulgaria | 2787 |
China | ICAR-CAAS | Institute of Crop Sciences, CAAS, China | 3837 |
Czech Republic | CZE | AGRITEC, Research, Breeding and Services Ltd., Sumperk, Czech Republic | 1284 |
France | INRA | INRA CRG Légumineuse à grosses graines, Dijon, France | 1891 |
Germany | GAT | Leibniz Institute of Plant Genetics and Crop Plant Research, Gaterleben, Germany | 5336 |
Hungary | HUN | Institute for Agrobotany, Tapioszel, Hungary | 1188 |
Italy | BAR | Istituto del Germoplasma, Bari, CNR – Istituto di GeneticaVegetale, Italy | 4297 |
Netherlands | CGN | Centre for Genetic Resources, Wageningen, Netherlands | 1008 |
Poland | WTD | Plant Breeding and Acclimatization Institute Blonie, Radzikow, Poland | 2899 |
Russia | VIR | N.I. Vavilov Research Institute of Plant Industry, St. Petersburg, Russia | 6790 |
Sweden | NGB | Nordic Gene Bank, Nordic Genetic Resource Centre, Alnarp, Sweden | 2724 |
Syria | ICARDA | International Center for Agricultural Research in the Dry Areas, Aleppo, Syria | 6105 |
Ukraine | UKR | Yurjev Institute of Plant Breeding, Kharkov, Ukraine | 1671 |
United Kingdom | JIC | John Innes Centre, Norwich, UK | 3557 |
United States | USDA; NYSAES | Plant Germplasm Introduction and Testing Research Station, Pullman; NY State Agricultural Experiment Station, USA | 5400; 2500 |
1.2 Appendix I-B: List of Web Databases Providing Links to Pea Related Information
Database | Website |
---|---|
Bioinformatics gateway towards integrative legume biology | |
Cool Season Food Legume Genome Database | |
INRA Dijon Legume genetic and genomic resources | |
INRA Legume Base | |
International Legume Database & Information Service (ILDIS) | |
Know Pulse | |
Legume Information System (LIS) | |
Legume IP | |
Legume phylo-informatics database | |
Legume proteomes | |
Medicago truncatula HapMap Project | |
Phytozome -Soybean Gbrowser | |
UTILLdb: URGV TILLING pea database |
1.3 Appendix II-A: List of Recommended Varieties of Peas in India
State | Recommended varieties |
---|---|
Bihar | DDR-23 (Pusa Prabhat), V L Matar -42 |
Chhattisgarth | Shubhra (IM-9101), Vikas (IPFD-99-13), Paras |
Gujarat | JP-885, IPFD 10–12, Indra, Prakash |
Haryana | Uttra (HFP-8909), DDR-27 (Pusa panna), Hariyal (HFP-9907 B), HFP-9426, Alankar, Jayanti (HFP-8712), Aman( IPF5-19) |
Jharkhand | PL Matar-42, V L Matar -42 |
Madya Pradesh | Prakash (IPFD 1–10), Vikas (IPFD-99-13) |
Maharashtra | JP-885, Ambika, Indra (KPMR-400), Adarsh (IPF 99-25), IPFD 10–12 |
Punjab | Jay (KPMR-522), Pant pea-42, KFP-103 (Shikha), Uttra (HFP8909), Aman ( IPF5-19) |
Rajasthan | DMR-7 (Alankar), Pant Pea-42 |
Uttar Pradesh | Swati (KFPD-24), Malviya Matar-15 (HUDP-15), Vikas, Sapna (KPMR-1441), IPF 4-9 |
Uttarakhand | Pant Pea-14, Pant Pea-25, V L Matar -47 |
1.4 Appendix II-B: World List of Recommended Varieties of Pisum sativum in some Producing Countries
Country | Recommended varieties |
---|---|
Czech Republic | Adept, Alan, Baryton, Bohatyr, CanisCarrera, Catania, Garde, Gotik, Grana, Hardy, Harnas, Herold, Jackpot, Janus, Kamelot, Komet, Lantra, Madonna, Menhir, Merkur, Olivin, Pegas, Power, Primus, Profi, Romeo, Sonet, Sponzor, Tempra, Terno, Tyrkys, Zekon |
Egypt | Master B, Little Marvel, Lincoln, Luxer, Sugary, Sohag 1, Sohag 2, Ambassador, Hurst Greenshaft, Senator, Sugar Snap, Delikett, Victory Freezer |
Ethiopia | Burkitu, Adet-1, Sefinesh, Gume, Tegegnech, Wolmera, Hassabe |
Pakistan | Climax, Matar, Meteor, Climax, Greenfeast and Rondo |
UK | Manager, Cascade, Capulet, Deity, Croft, Pastoral Swift, Venture, Madras, Salamanca |
Rights and permissions
Copyright information
© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this chapter
Cite this chapter
Abdel-Hamid, A.M.E., Salem, K.F.M. (2021). Breeding Strategies of Garden Pea (Pisum sativum L.). In: Al-Khayri, J.M., Jain, S.M., Johnson, D.V. (eds) Advances in Plant Breeding Strategies: Vegetable Crops. Springer, Cham. https://doi.org/10.1007/978-3-030-66969-0_9
Download citation
DOI: https://doi.org/10.1007/978-3-030-66969-0_9
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-66968-3
Online ISBN: 978-3-030-66969-0
eBook Packages: Biomedical and Life SciencesBiomedical and Life Sciences (R0)