Abstract
Ipomoea aquatica Forsk. (Convolvulaceae) is a commonly grown vegetable in the Americas, Africa and especially Southeast Asia, including India. Due to the presence of numerous secondary metabolites, this plant has considerable therapeutic as well nutraceutical value and is categorized among highly prioritized but neglected leafy vegetables. Proper identification of the higher quality genotypes of I. aquatica will help scientists explore major genes to develop future high-quality varieties. Therefore, an integrated approach combining traditional and molecular plant breeding should be carried out to strengthen future breeding programs. Identification of traits controlling genes by extensive database searching with bioinformatics, followed by genomics and transgenic approaches, opens a new possibility to use these beneficial vegetables as potent nutraceuticals, especially in developing countries where malnutrition is a matter of concern. Application of plant cell culture technique can be an attractive field of research for this plant species. In this context micropropagation is the best choice for producing year around pilot-scale production within a short time span. In vitro plantlets can also be conserved as artificial seed to maintain elite plant lines with augmented secondary metabolites. Screening by the use of hairy root culture under photoautotrophic condition to detect contaminants and pollution can assure cultivars are safe to consume. This chapter presents an overview of the origin, distribution, botanical classification , breeding through classical and molecular approaches, tissue-culture practices like rapid micropropagation for high frequency regeneration, use of elite clones and conservation by alginate entrapment, prospects of using hairy root culture, recent developments and future scope of biotechnology and molecular biology using bioinformatics and transgenic approaches and their application for improvement of I. aquatica.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Agostini E, Talano MA, González PA et al (2013) Application of hairy roots for phytoremediation: what makes them an interesting tool for this purpose. Appl Microbiol Biotechnol 97:3
Akimoto C, Aoyagi H, Tanaka H (1999) Endogenous elicitor-like effects of alginate on physiological activities of plant cells. Appl Microbiol Biotechnol 52(3):429–436
Alfermann AW, Reinhard E (1980) Biotransformations by plant tissue culture. Bull Soc Chim Fr Nos 1–2:II-35–II-45
Anonymous (1959) Wealth of India, raw materials. CSIR, New Delhi 5:237–237
Ara H, Jaiswal U, Jaiswal V (2000) Synthetic seed: prospects and limitation. Curr Sci 78:1438–1444
Ardelean M, Cordea M, Pamfil D et al (2004) Revealing genetic diversity of three sections (Pharbitis, Quamoclit and Batatas) of Ipomoea genus by means of RAPD analysis. Acta Hortic 651:149–153
Attoumbré J, Charlet S, Baltora-Rosset S, et al (2006) High accumulation of dehydrodiconiferyl alcohol-4-β-D-glucoside in free and immobilized Linum usitatissimum cell cultures. Plant Cell Rep 25:859–864
Austin DF (2007) Water spinach (Ipomoea aquatica, Convolvulaceae), a food gone wild. Ethnobot Res Appl 5:123–146
Badruzzaman SM, Husain W (1992) Some aquatic and marshy land medicinal plants from Hardoi district of Uttar Pradesh. Fitoterapia 63:245–247
Bergman M, Varshavsky L, Gottlieb HE, Grossman S (2001) The antioxidant activity of aqueous spinach extract: chemical identification of active fractions. Phytochemisty 58:143–152
Brodelius P, Deus B, Mosbach K, Zenk MH (1979) Immobilized plant cells for the production and transformation of natural products. Feddes Lett 103(1):93–97
Burgos NR, Stephenson DO, Agrama HA et al (2011) A survey of genetic diversity of the weedy species Ipomoea lacunosa L. in the USA Mid-South. Am J Plant Sci 2:396–407
Burkill A (1966) Dictionary of the economic products of the Malay Peninsula. Ministry of Agriculture and Cooperatives, Kuala Lumpur
Cai Q-Y, Mo C-H, Zeng Q-Y, Wu Q-T, Férard J-F, Antizar-Ladislao B (2008) Potential of Ipomoea aquatica cultivars in phytoremediation of soils contaminated with di-n-butyl phthalate. Environ Exp Bot 62(3):205–211
Candlish JK (1983) Tocopherol content of some Southeast Asian foods. J Agric Food Chem 31:166–168
Candlish JK, Gourley L, Lee HP (1987) Dietary fiber and starch contents of some Southeast Asian vegetables. J Agric Food Chem 35:319–321
Chandra JH, Shamli M (2015) Antibacterial, antioxidant and in silico study of Ipomoea aquatic Forsk. JPAM 9(2):1371–1376
Chauhan H, Singh J (2018) Cluster analysis of water spinach (Ipomoea aquatica Forsk.) genotypes collected from various places of Chhattisgarh region. Trend Biosci 11(6):10067, ISSN 0974-8431
Chauhan H, Singh J, Sharma D (2017) Genetic variability and heritability estimation in water spinach (Ipomoea aquatica Forsk) genotypes. Int J Curr Microbiol Appl Sci 6(9):3018–3024. https://doi.org/10.20546/ijcmas.2017.609.370
Chauhan ES, Sharma K, Bist R (2019) Research Journal of Pharmacy and Technology 12(2):891
Cha-um S, Roytrakul S, Kirdmanee C et al (2007) A rapid method for identifying salt tolerant water Convolvulus (Ipomoea aquatica Forsk) under in vitro photoautotrophic conditions. Plant Stress 1(2):228–234
Chen BH, Chen YY (1992) Determination of carotenoids and chlorophylls in water convolvulus (Ipomoea aquatica) by liquid chromatography. Food Chem 45:129–130
Chen BH, Yang SH, Han IH (1991) Characterization of major carotenoids in water convolvulus (Ipomoea aquatica) by open-column, thin-layer and high-performance liquid chromatography. J Chromatogr 543:147–155
Chitsa H, Mtaita T, Tabarira J (2014) Nutrient content of water spinach (Ipomoea aquatica) under different harvesting stages and preservation methods in Zimbabwe. Int J Biol Chem Sci 8:854–861
Chu YH, Chang CL, Hsu HF (2000) Flavonoid content of several vegetables and their antioxidant activity. J Sci Food Agric 80:561–566
Cornelis J, Nugteren JA, Westphal E (1985) Kangkong (Ipomoea aquatica Forssk.): an important leaf vegetable in South-East Asia. Review Article. Abstr Trop Agric 10(4):9–21
Curtis WR, Wang P, Humphrey A (1995) Role of calcium and differentiation in enhanced sesquiterpene elicitation from calcium alginate-immobilized plant tissue. Enzyme Microb Technol 17(6)554–557
Daniel M (1989) Polyphenols of some Indian vegetables. Curr Sci 58:1332–1333
Das S (2011) Congruence between morphological and molecular approach in understanding species relationship in Ipomoea spp.: a rare event in taxonomy. Asian J Plant Sci 10(4):263–268
Das S, Mukherjee KK (1997) Morphological and biochemical investigations on Ipomoea seedlings and their species interrelationships. Ann Bot 79:565–571
Dewanjee S, Dua TK, Khanra R, Das S, Barma S, Joardar S, Bhattacharjee N, Zia-Ul-Haq M, JaafarHZE (2015) Water Spinach, Ipomoea aquatica (Convolvulaceae), Ameliorates Lead Toxicity by Inhibiting Oxidative Stress and Apoptosis. PLOS ONE10(11):e0143766
Dhanasekaran S, Muralidaran P (2010) CNS depressant and antiepileptic 55 activities of the methanol extract of the leaves of Ipomoea aquatica Forsk. E J Chem 7:15–61
Daniel FA (2007) Water Spinach (Ipomoea aquatica, Convolvulaceae): a food gone wild. Ethnobot Res Appl 5:123–146
Dua TK, Dewanjee S, Gangopadhyay M et al (2015) Ameliorative effect of water spinach, Ipomea aquatica (Convolvulaceae), against experimentally induced arsenic toxicity. J Transl Med 13:81. https://doi.org/10.1186/s12967-015-0430-3
Duc BM, Humphries D, Mai ITB et al (1999) Iron and vitamin C content of commonly consumed foods in Vietnam. Asia-Pac J Clin Nutr 8:36–38
Duke JA, Ayensu ES (1985) Medicinal plants of China. Reference Publications, Algonac Michigan
Edie HH, Ho WCB (1969) Ipomoea aquatica as a vegetable crop in Hong Kong. Econ Bot 23(1):32–36
Faruq UZ, Sani A, Hassan LG (2002) Proximate composition of sickle pod (Senna obtusfolia) leaves. Niger J Appl Sci 11:157–164
Fedorov AA (1969) Chromosome numbers of flowering plants. Academy of Sciences of USSR, Moscow
Folorunso AE, Illoh HC, Olorungbeja JA (2013) Numerical taxonomy of some Ipomoea (Linn.) species in south-west Nigeria. Ife J Sci 15(1):63
Furuya T, Yoshikawa T, Taire M (1984) Biotransformation of codeinone to codeine by immobilized cells of Papaver somniferum. Phytochemistry 23:999
Gamble JS (1921) Flora of the presidency of Madras, India. Digital Library of India, India. Digital Library of India Item 2015.217737
Germana MA, Micheli M, Chiancone B et al (2011) Organogenesis and encapsulation of in vitro-derived propagules of carrizo citrange [Citrus sinensis (L.) Osb 9 Poncirus trifoliata (L.) Raf]. Plant Cell Tiss Organ Cult 106 (in press)
Gilleta F, Roisin C, Fliniaux MA, Jacquin-Dubreuil A, Barbotin JN, Nava-Saucedo JE (2000) Immobilization of Nicotiana tabacum plant cell suspensions within calcium alginate gel beads for the production of enhanced amounts of scopolin. Enzyme Microbial Technol 26(2–4):229–234
Gong Y, Yuan J, Yang Z et al (2010) Cadmium and lead accumulations by typical cultivars of water spinach under different soil conditions. Fresenius Environ Bull 19(2):190–197
Gontier E, Sangwan BS, Barbotin JN (1994) Effects of calcium, alginate, and calcium-alginate immobilization on growth and tropane alkaloid levels of a stable suspension cell line of Datura innoxia Mill. Plant Cell Rep 13:533–536 https://doi.org/10.1007/BF00232951
Grant CA, Clarke JM, Duguid S et al (2008) Selection and breeding of plant cultivars to minimize cadmium accumulation. Sci Total Environ 390:301–310
Grubben GJH (2004) Ipomoea aquatica Forssk. In: Gruben GJH, Denton O (eds) APlant resources of Tropical Africa 2. Vegetables. pp 332–335. Wageningen, Netherlands: PROTA Foundations; Wageningen, Netherlands/Backhuys Publishers; Lieden, Netherlands/CTA
Gupta S, Lakshmi AJ, Manjunath MN et al (2005) Analysis of nutrient and antinutrient content of underutilized green leafy vegetables. LWT Food Sci 38(4):339–345
Hall RD, Holden MA, Yeomani MM (1989) Immobilization of higher plant cells. In: Bajaj YPS (ed) Biotechnology in agriculture and forestry, Medicinal and aromatic plants I, vol 4. Springer, Berlin, pp 136–156
Hamid K, Ullah MO, Sultana S, Howlader MA, Basak D, Nasrin F, Rahman MM (2011) Evaluation of the Leaves of Ipomoea aquatica for its Hypoglycemic and Antioxidant Activity. J Pharm Sci Res 3(7):1330–1333
Hirofumi N, Masaki T, Masahito T (2000) Development and characterization of a photoautotrophic cell line of pack bung hairy roots. J Biosci Bioeng 89:151–156
Hoang TL, Böhme M (2001) Influence of humic acid on the growth of water spinach (Ipomoea aquatica Forsk) in hydroponic system. Wissenschaftliche Arbeitstagung, BDGL-Schriftenreihe, Band 19:57
Hongfei F, Bijun X, Shaojun M et al (2011) Evaluation of antioxidant activities of principal carotenoids available in water spinach (Ipomoea aquatica). J Food Compos Anal 24(2):288–297
Huang B, Xin J, Yang Z, Zhou Y, Yuan J, Gong Y (2009a) Suppression subtractive hybridization (SSH)-based method for estimating Cd-induced differences in gene expression at cultivar level and identification of genes induced by Cd in two water spinach cultivars. J Agric Food Chem 57(19):8950–8962
Huang B, Xin J, Yang Z, Zhou Y, Yuan J, Gong Y (2009b) Suppression subtractive hybridization (SSH)-based method for estimating Cd-induced differences in gene expression at cultivar level and identification of genes induced by Cd in two water spinach cultivars. Agric Food Chem 57(523):8950–8962
Huang B, Xin J, Dai H, et al (2014) Translocation analysis and safety assessment in two water spinach cultivars with distinctive shoot Cd and Pb concentrations. Environ Sci Pollut Res 21:11565–11571
Huang YY, Shen C, Chen JX et al (2016) Comparative transcriptome analysis of two Ipomoea aquatica Forsk cultivars targeted to explore possible mechanism of genotype-dependent accumulation of cadmium. J Agric Food Chem 64(25):5241–5250
Huang Y-Y, Gong F-Y, Shen C et al (2018) Cloning, characterization and expression analysis of metallothioneins from Ipomoea aquatica and their cultivar-dependent roles in Cd accumulation and detoxification. Ecotoxicol Environ Saf 165:450–458
Hussain S, Fareed S, Ansari S et al (2012) Current approaches toward production of secondary plant metabolites. J Pharm Bioallied Sci 4(1):10–20
Ibrahim MH, Abas NA, Zahra SM (2019) Impact of salinity stress on germination of water spinach (Ipomoea aquatica). ARRB 31(5):1–12
Igwenyi IO, Offor CE, Ajah DA et al (2011) Chemical compositions of Ipomoea aquatica (green kangkong). Int J Pharm Bio Sci 2(4):593–598
Imb A, Pham LQ (1995) Lipid composition of ten edible seed species from North Vietnam. J Am Oil Chem Soc 72:957–961
Jayeola AA, Oladunjoye OR (2012) Systematic studies in some Ipomoea Linn. Species using pollen and flower morphology. Ann West Univ Timis ßoara, Ser Biol 15(2):177–187
Johnson TS, Ravishankar GA, Venkataraman LV (1991) Elicitation of Capsicin production in freely suspended cells and immobilized cell cultures of Capsicum frutescens Mill. Food Biotechnol 5(2):197–205
Kala A, Prakash J (2004) Nutrient composition and sensory profile of differently cooked green leafy vegetables. Int J Food Prop 7:659–669
Kaur J, Rawat A, Renu SK et al (2016) Taxonomy, phytochemistry, traditional uses and cultivation of Ipomoea Aquatica Forsk. Imp J Interdiscip Res 2(10):408–412
Khamwan K, Akaracharanya A, Chareonpornwattana S et al (2003) Genetic transformation of water spinach (Ipomoea aquatica). Plant Biotechnol 20(4):335–338
Khare CP (2007) Indian medicinal plants: an illustrated dictionary. Springer, New York
Kino-oka M, Taya M, Tone S (1991) Production of superoxide dismutase from plant hairy roots by considering the effect of nitrogen source in their cultures. Kagaku Kogaku Ronbunshu 17:1012–1018. (in Japanese)
Kiradmanee C, Phaephun W, Teerakathiti T et al (2006) An effective in-vitro selection of water spinach (Ipomoea aquatica Forsk) for NaCl-, KH2PO4- and temperature-stresses. Environ Control Biol 44(4):265–277
Kirtkar KR, Basu BD (1952) Indian medicinal plants, 1st edn. Parbani Press, Kolkata
Kiuo-oka M, Nagatome H, Taya M et al (1996) Effect of light irradiation on growth and chlorophyll formation of pak-bung green hairy roots. J Chem Eng Jpn 29(6):1050–1054
Lane EA, Canty MJ, More SJ (2015) Cadmium exposure and consequence for the health and productivity of farmed ruminants. Res Vet Sci 101:132–139. https://doi.org/10.1016/j.rvsc.2015.06.004
Lawal U, Maulidiani M, Shaari K et al (2017) Discrimination of Ipomoea aquatica cultivars and bioactivity correlations using NMR-based metabolomics approach. Plant Biosyst 151(5):833–843
Li N, Kang Y, Pan WJ et al (2015) Concentration and transportation of heavy metals in vegetables and risk assessment of human exposure to bio accessible heavy metals in soil near a waste-incinerator site. South China. Sci Total Environ 521–522:144–151
Li W, Ding H, Zhang F et al (2016) Effects of water spinach Ipomoea aquatica cultivation on water quality and performance of Chinese soft-shelled turtle Pelodiscus sinensis pond culture. Aquac Environ Interact 8:567–574. https://doi.org/10.3354/aei00198
Lian GY, Gang YJ, Yi YZ et al (2010) Cadmium and lead accumulations by typical cultivars of water spinach under different soil conditions. Fresenius Environ Bull 19(2):190–197
Mabberley DJ (1997) The plant book, 2nd edn. Cambridge University Press, Cambridge
Malakar C, NathChoudhury PP (2015) Pharmacological potentiality and medicinal uses of Ipomoea aquatic Forsk: a review. Asian J Pharm Clin Res 8(2):60–63
Mariani R, Perdana F, Fadhlillah FM et al (2019) Antioxidant activity of Indonesian water spinach and land spinach (Ipomoea aquatica): a comparative study. J Phys Conf Ser 1402:05509
Masahiro KO, Hirofumi N, Masahito T et al (1996) Effect of light irradiation on growth and chlorophyll formation of packbung green hairy roots. J Chem Eng Jpn 29:1050–1054
Masanori F, Atsuhiko N, Kazuya Y (1997) Methods for introducing foreign genes into tropical aquatic plant Ipomea aquatica and regenerating the plant. Patent CA Section 3
Meerak J, Akaracharanya A, Leepipatpiboon N et al (2006) Simultaneous expression of serineacetyl transferase and cysteine synthase results in enhanced sulfate uptake and increased biomass in Ipomaea aquatica. Plant Biotechnol 23:185–189
Miean KH, Mohamed S (2001) Flavonoid (myricetin, quercetin, kaempferol, luteolin and apigenin) content of edible tropical plants. J Agric Food Chem 49:3106–3112
Miller RE, Rauscher MD, Manos PS (1999) Phylogenetic systematics of Ipomoea (Convolvulaceae) based on ITS and WAXY sequences. Syst Bot 24:209–227
Miller RE, McDonald JA, Manos PS (2004) Systematics of Ipomoea subgenus Quamoclit (Convolvulaceae) based on ITS sequence data and a Bayesian phylogenetic analysis. Am J Bot 91:1208–1218
Milner MJ, Mitani-Ueno N, Yamaji N et al (2014) Root and shoot transcriptome analysis of two ecotypes of Noccaea caerulescens uncovers the role of NcNramp1 in Cd hyperaccumulation. Plant J 78(530):398–410
Moontongchoon P, Chadchawan S, Leepipatpiboon N et al (2008) Cadmium-tolerance of transgenic Ipomoea aquatica expressing serine acetyltransferase and cysteine synthase. Plant Biotechnol 25:201–203
Moulin MM, Rodrigues R, Gonçalves LSA, Sudré CP, Pereira MG (2012) A comparison of RAPD and ISSR markers reveals genetic diversity among sweet potato landraces (Ipomoea batatas (L.) Lam.). Acta Scientiarum. Agronomy 34(2)
Munger HM (1999) Enhancement of horticulture crops for improved health. Hortic Sci 34:1158–1159
Nadkarni AK (1954) Indian materia medica, 3rd edn. Popular Books, Bombay
Nagatome IL, Tsutsumi M, Kino-oka M et al (2000) Development and characterization of a photoautotrophic cell line of pak-bung hairy roots. J Biosci Bioeng 89:151–156
Nahar KK, Alam SS (2016) Karyotype and RAPD analysis of ipomoea aquatica samples collected from different industrial effluent affected areas. Cytologia 81(3):285–290
Naskar KR (1990) Aquatic & semi aquatic plants of lower Ganga delta. Daya Publishing, Delhi
Ng CC, Rahman MM, Boyce AN, Abas MR (2016a) Heavy metals phyto-assessment in commonly grown vegetables: water spinach (I. aquatica) and okra (A. esculentus). SpringerPlus 5:469. https://doi.org/10.1186/s40064-016-2125-5
Ng CC, Rahman MM, Boyce AN et al (2016b) Heavy metals phyto-assessment in commonly grown vegetables: water spinach (I. aquatica) and okra (A. esculentus). Springerplus 5:469–478
Ngamsaeng A, Thy S, Preston TR (2004) Duckweed (Lemna minor) and water spinach (Ipomoea aquatica) as protein supplements for ducks fed broken rice as the basal diet. Livest Res Rural Dev 16:18–24
Ninomiya K, Nagatome H, Kino-oka M et al (2001) Elongating potential of pak-bung hairy roots under photoautotrophic culture condition. J Chem Eng Jpn 34:1396–1401
Ninomiya K, Oogami Y, Kino-oka M et al (2002) Elongating responses to herbicides of heterotrophic and photoautotrophic hairy roots derived from pak-bung plant. J Biosci Bioeng 93:505–508
Ninomiya K, Oogami Y, Kino-oka M et al (2003) Assessment of herbicidal toxicity based on nondestructive measurement of local chlorophyll content in photoautotrophic hairy roots. J Biosci Bioeng 95(3):264–270
Ogle BM, Ha-Thi AD, Mulokozi G et al (2001) Micronutrient composition and nutritional importance of gathered vegetables in Vietnam. Int J Food Sci Nutr 52:485–499
Ogunwenmo KO (2003) Cotyledon morphology: an aid in identification of Ipomoea taxa (Convolvulaceae). Feddes Rep 114:198–203
Ogunwenmo KO, Oyelana OA (2009) Biotypes of Ipomoea aquatica Forssk. (Convolvulaceae) exhibit ecogeographic and cytomorphological variations in Nigeria. Plant Biosyst 143(1):71–80
Palada MC, Crossman SMA (1999) Evaluation of tropical leaf vegetables in the Virgin Islands. In: Janick J (ed) Perspectives on new crops and new uses. ASHS Press, Alexandria, pp 388–393
Pandey P, Jha M (2019) Response of different media on growth and yield of water spinach (Ipomoea aquatic Forsk) under container gardening. J Pharmacogn Phytochem 8(5):1775–1776
Pandjaitan N, Howard LR, Morelock T, Gil MI (2005) Antioxidant capacity and phenolic content of spinach as affected by genetics and maturation. J Agric Food Chem 53:8618–8623
Papoyan A, Kochian LV (2004) Identification of Thlaspi caerulescens genes that may be involved in heavy metal hyperaccumulation and tolerance. Characterization of a novel heavy metal transporting ATPase. Plant Physiol 136:3814–3823
Patnaik S (1976) Autecology of Ipomoea aquatica Forsk. J Inland Fish Soc India 8:77–82
Payne WJ (1956) Ipomoea reptans Poir a useful tropical fodder plant. Trop Agric Trin 33:302–305
Perry LM, Metzger J (1980) Medicinal plants of east and Southeast Asia: attributed properties and uses. MIT Press, Cambridge, MA
Pinker I, Bubner U, Böhme M (2004) Selection of water spinach genotypes (Ipomoea aquatica Forsk.) for cultivation in greenhouses. Acta Hortic 659:439–445
Prasad MNV (2019) Transgenic plant technology for remediation of toxic metals and metalloids. Academic, London, pp 395–428. https://doi.org/10.1016/B978-0-12-814389-6.00019-5
Prasad NK, Divakar S, Shivamurthy GR et al (2005) Isolation of a free radical scavenging antioxidant from water spinach (Ipomoea aquatica Forsk.). J Sci Food Agric 85:1461–1468
Prasad NK, Shiva Prasad M, Aradhya SM et al (2006) Callus induction from Ipomoea aquatica Forsk. leaf and its antioxidant activity. Indian J Biotechnol 5:107–111
Rai UN, Sinha S (2001) Distribution of metals in aquatic edible plants: Trapa natans (Roxb.) Makino and Ipomoea aquatica Forsk. Environ Monit Assess 70(3):241–252
Rai MK, Asthana P, Singh SK et al (2009) The encapsulation technology in fruit plants - a review. Biotechnol Adv 27:671–679
Ramakrishna SV, Reddy GR, Curtis WR et al (1993) Production of solavetivone by immobilized cells of Hyoscyamus muticus. Biotechnol Lett 15:301
Rane VA, Patel BB (2015) Phylogenetic relationship of ten Ipomoea JACQ. species based on RAPD analysis. Int J Inst Pharm Life Sci 5(2):203–212
Rao TVRK, Vijay T (2002) Iron, calcium, p-carotene, ascorbic acid and oxalic acid contents of some less common leafy vegetables consumed by the tribals of pumia district of Bihar. J Food Sci Technol 39:560–562
Reed CF (1977) Economically important foreign weeds: potential problems in the United States, 1st edn. USDA, Washington, DC
Roi J (1955) Treatise on Chinese medicinal plants. Paul Lechevalier, Paris
Sajc L, Vunjak-Novakovic G, Grubisic D, Kovačević N, Vuković D, Bugarski B (1995) Production of anthraquinones by immobilized Frangula alnus Mill. plant cells in a four-phase air-lift bioreactor. Appl Microbiol Biotechnol 43(3):416–423
Sakulkoo N, Akaracharanya A, Chareonpornwattana S et al (2005) Hyper-assimilation of sulfate and tolerance to sulfide and cadmium in transgenic water spinach expressing an Arabidopsis adenosine phosphosulfate reductase. Plant Biotechnol 22(1):27–32
Samuelsson G, Farah MH, Claeson P et al (1992) Inventory of plants used in traditional medicine in Somalia II plants of the families Combretaceae to Labiatae. J Ethnopharmacol 37:47–70
Sato S, Tabata S, Hirakawa H et al (2012) The tomato genome sequence provides insights into fleshy fruit evolution. Nature 485:635–641. https://doi.org/10.1038/nature11119
Schmutz J, Cannon SB, Schlueter J et al (2010) Genome sequence of the palaeopolyploid soybean. Nature 463:178–183. https://doi.org/10.1038/nature08670
Shen C, Huang YY, He CT et al (2017) Comparative analysis of cadmium responsive microRNAs in roots of two Ipomoea aquatic Forsk. cultivars with different cadmium accumulation capacities. Plant Physiol Biochem 111:329–339
Shibasaki-Kitakawa N, Iizuka Y, Yonemoto T (2001) Cultures of Nicotiana tabacum Cells Immobilized in Calcium Alginate Gel Beads Coated with Cell-Free Gel Film 34(11):1431–1438
Shimoda K, Kubota N, Hamada H, Kobayashi T, Hamada H, Shafi SM, Nakajima N (2009) Production of (2R,3S)-2-benzamidomethyl-3-hydroxybutanoates by immobilized plant cells of Parthenocissus tricuspidata. Biochem Insights 2:5–7
Simoes AR, Culham A, Carine M (2015) Resolving the unresolved tribe: a molecular phylogenetic framework for the Merremieae (Convolvulaceae). Bot J Linn Soc 179(3):374–387
Singh PK, Tiwari SK, Rai N et al (2016) Antioxidant and phytochemical levels and their interrelation in stem and leaf extract of water spinach (Ipomea aquatica). Indian J Agric Sci 86(3):347–354
Standardi A, Piccioni E (1998) Recent perspectives on synthetic seed technology using non-embryogenic in vitro-derived explants. Int J Plant Sci 159:968–978
Stefanovic S, Krueger L, Olmstead RG (2002) Monophyly of the convolvulaceae and circumscription of their major lineages based on DNA sequences of multiple chloroplast loci. Am J Bot 89(9):1510–1522. https://doi.org/10.3732/ajb.89.9.1510
Stephen LJ, Bopaiah AK (2014) An ideal media for the in-vitro propagation of Ipomoea palmata Forssk. [Synonym – Ipomoea cairica. L. Sweet] Convolulaceae. IOSR J Pharm Biol Sci 9(1):18–23. e-ISSN: 2278-3008, p-ISSN:2319-7676
Synder GH, Morton JF, Genung WG (1981) Trials of Ipomoea aquatic nutritious vegetable with high protein and nitrate extraction potential. Proc Fla State Hortic Soc 94:230–235
Tang SH, Sun M, Li KP (1994) Studies on artificial seed of Ipomoea aquatica Forsk. Acta Hortic Sin 21(1):71–75
Tang L, Luo W-J, He Z-L et al (2018) Variations in cadmium and nitrate co-accumulation among water spinach genotypes and implications for screening safe genotypes for human consumption. Zhejiang Univ Sci B Biomed Biotechnol 19(2):147–115
Taya M, Yoyama A, Kondo O et al (1989) Hairy root from pak-bung for peroxidase production. Plant Tissue Cult Lett 6:159–161
Taya M, Sato H, Kino-oka M et al (1994) Characterization of pak-bung green hairy roots cultivated under light irradiation. J Ferment Bioeng 78(1):42–48
Toleno DM, Durbin ML, Lundy KE, Clegg MT (2010) Extensive evolutionary rate variation in floral color determining genes in the genus Ipomoea. Plant Spec Biol 25:30–42
Tseng CF, Iwakami S, Mikajiri A et al (1992) Inhibition of in vitro prostaglandin and leukotriene biosynthesis by cinnamoyl-betaphenethylamine and N-acyldopamine derivatives. Chem Pharm Bull (Tokyo) 40(2):396–400
Umar K, Hassan LG, Dangoggo SM, Ladan MJ (2007) Nutritional composition of water spinach (Ipomoea aquatic Forsk.) leaves. J Appl Sci 7:803–809
Van TK, Madeira PT (1998) Random amplified polymorphic DNA analysis of water spinach (Ipomoea aquatica) in Florida. J Aquat Plant Manag 36:107–111
Van Oostroom SJ (1940) The Convolvulaceae of Malaysia, III The genus Ipomoea. Blumea 3:481–582
Varshney R, Song C, Saxena R et al (2013) Draft genome sequence of chickpea (Cicer arietinum) provides a resource for trait improvement. Nat Biotechnol 31:240–246. https://doi.org/10.1038/nbt.2491
Villegas M, Sommarin M, Brodelius PE (2000) Effects of sodium orthovanadate on benzophenanthridine alkaloid formation and distribution in cell suspension cultures of Eschscholtzia californica. Plant Physiol Biochem 38(3):233–241
Wang J, Yuan J, Yang Z et al (2009) Variation in cadmium accumulation among 30 cultivars and cadmium subcellular distribution in 2 selected cultivars of water spinach (Ipomoea aquatica Forsk). J Agric Food Chem 57:8942–8949
West TP, Ravindra MB, Preece JE (2006) Encapsulation, cold storage, and growth of Hibiscus moscheutos nodal segments. Plant Cell Tissue Organ Cult 87:223–231
Westphal E (1993) Ipomoea aquatica Forsskal. In: Siemonsma JS, Piluek K (eds) Plant resources of South-East Asia No 8 Vegetables. Pudoc Scientific Publishers, Wageningen, pp 181–184
Wichers HJ, Malingre TM, Hui Zing HJ (1983) The effect of some environmental factors on the production of L-DOPA by alginate-entrapped cells of Mucuna pruriens. Planta 158:482–483
Wills RBH, Wong AWK, Scriven FM et al (1984) Nutrient composition of Chinese vegetables. J Agric Food Chem 32:413–416
Xiao Q, Wong MH, Huang L, Ye Z (2015) Effects of cultivars and water management on cadmium accumulation in water spinach (Ipomoea aquatica Forsk.). Plant Soil 391:33–49. https://doi.org/10.1007/s11104-015-2409-5
Xin J, Huang B, Yang Z et al (2010) Responses of different water spinach cultivars and their hybrid to Cd, Pb and Cd-Pb exposures. J Hazard Mater 175:468–476
Xin J, Huang B, Yang Z et al (2011) Variations in the accumulation of Cd and Pb exhibited by different water spinach cultivars. Acta Sci Nat Univ Sunyatseni 50:79
Xin J, Huang B, Yang J, Yang Z, Yuan J, Mu Y (2012) Breeding For Pollution-Safe Cultiver Of Water Spinach to Minimize Cadmium Accumulation And Maximize Yield. Fresenius Environ Bull 21(7):1833–1840
Xin J, Huang B, Liu A et al (2013a) Identification of hot pepper cultivars containing low Cd levels after growing on contaminated soil: uptake and redistribution to the edible plant parts. Plant Soil 373:415–425
Xin JL, Huang BF, Yang ZY et al (2013b) Comparison of cadmium subcellular distribution in different organs of two water spinach (Ipomoea aquatica Forsk.) cultivars. Plant Soil 372(1–2):431–444
Xu X, Pan S, Cheng S et al (2011) Genome sequence and analysis of the tuber crop potato. Nature 475:189–195. https://doi.org/10.1038/nature10158
Yamaguchi H, Fukuoka H, Arao T et al (2010) Gene expression analysis in cadmium-stressed roots of a low cadmium-accumulating solanaceous plant, Solanum torvum. J Exp Bot 61:423–443
Zhang D, Ghislain M, Huamán Z et al (1998) RAPD variation in sweetpotato (Ipomoea batatas (L.) Lam) cultivars from South America and Papua New Guinea. Genet Resour Crop Evol 45:271–277
Zhang Q, Achal V, Xu Y, Xiang WN (2014) Aquaculture wastewater quality improvement by water spinach (Ipomoea aquatica Forsskal) floating bed and ecological benefit assessment in ecological agriculture district. Aquac Eng 60:48–55
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Appendices
Appendices
1.1 Appendix I: Research Institutes Relevant to Water Spinach
Institution | Specialization and research activities | Contact information and website |
---|---|---|
State Key Laboratory for Biocontrol and School of Life Sciences | Pollution-safe cultivar through traditional breeding, transcriptomics | Sun Yat-sen University, Guangzhou,510275, China Website: http://www.sysu.edu.cn |
Research and Instructional Farm of Horticulture, Department of Vegetable Science | Traditional and molecular breeding, agronomy | Indira Gandhi Krishi Vishwavidyalaya, Raipur, Chhattisgarh, India Website: http://www.igau.edu.in/ |
Laboratory of Aquatic Vegetables | Breeding | Yangzhou University, Yangzhou, 225009, P.R. China Website: http://en.yzu.edu.cn/ |
Fengshan Tropical Horticultural Experiment Station | Germplasm maintenance, breeding | Taiwan Agricultural Research Institute, Fengshan, Kaohsiung, Taiwan Website: https://www.tari.gov.tw/english/ |
Department of Botany | Phytochemistry | University of Allahabad, Allahabad, India Website: http://www.allduniv.ac.in/ |
School of Environment and Life Science | Agronomy | University of Salford, Salford M5 4WT, United Kingdom Website: https://www.salford.ac.uk/ |
College of Natural Resources | Plant breeding | University of California, Berkeley, CA 94720, USA Website: https://www.berkeley.edu/ |
Humboldt-University of Berlin | Molecular biology, breeding | Institute of Horticultural Sciences Lentzeallee 75, 14195 Berlin Germany Website: https://www.hu-berlin.de/ |
Department of Botany | Taxonomy | Dr. B. A. M. University, Aurangabad, (M.S.), India Website: http://www.bamu.ac.in/ |
Department of Safety and Environmental Engineering | Breeding and molecular biology | Hunan Institute of Technology, Hengyang 421002, China Website: http://www.hnit.edu.cn/ |
Key Laboratory of Tropical Agro-environment | Agronomy, nutrition | Ministry of Agriculture/South China Agricultural University, Guangzhou 510642, P.R.China Website: http://english.scau.edu.cn/ |
Resources and Environment College | Pollution-safe cultivar through traditional breeding | Qingdao Agricultural University, Qingdao 266109, China Website: https://www.qau.edu.cn/ |
College of Agronomy | Pollution-safe cultivar through traditional breeding | Hunan Agricultural University, Changsha 410128, China Website: http://english.hunau.edu.cn/ |
Advanced Pharmacognosy Research Laboratory | Pharmacognosy and phytochemistry | Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India Website: http://www.jaduniv.edu.in/ |
Department of Horticulture | Breeding, nutrition | Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, Nadia, West Bengal 741252 Website: https://www.bckv.edu.in/ |
1.2 Appendix II: Genetic Resources of Water Spinach
Cultivar | Important traits | Cultivation location | Source |
---|---|---|---|
Ipomoea aquatica - Variant I | Broad leaved | Southeast Asia | Austin (2007) |
I. aquatica - Variant II | Narrow leaved | Southeast Asia | Kaiser Hamid et al. (2011) |
Kankoong beeasa | Dark-green leaves and stems and purple flowers | Java | Cornelis et al. (1985) |
Kankoong nagree | Yellowish-green leaves, yellowish stems and white flowers | Java | Cornelis et al. (1985) |
Pak Quat | White stems | Hong Kong | Pritesh Pandey and Madan Jha (2019) |
Ching Quat | Green stems | Hong Kong | Pritesh Pandey and Madan Jha (2019) |
cv. QLQ | Low shoot Cd cultivar | China | Xin et al. (2010) |
cv. T308 | High shoot Cd cultivar | China | Baifei Huang et al. (2014) |
Red stem cultivar | Dryland cultivation | China | Austin (2007) |
White stem cultivar | Wetland cultivation | China | Austin (2007) |
Taiwan filiform-leaf I. aquatica | High phytoremediation potential | Taiwan | Quan-Ying Cai et al. (2008) |
Hong Kong white-skin I. aquatica | Low phytoremediation potential | Hong Kong | Saikat Dewanjee et al. (2015) |
cv. Taiwan 308 | Non-Cadmium-PSC | Taiwan, China | Wang et al. (2009) |
Xianggangdaye, Sannongbaigeng, and Jieyangbaigeng | Non-Cadmium-PSC | China | Wang et al. (2009) |
cv. Daxingbaigu, Huifengqing, Qiangkunbaigu, Qiangkunqinggu, Shenniuliuye, and Xingtianqinggu | Cadmium-PSCs | China | Wang et al. (2009) |
Thaiqinggengliuye water spinach (Liuye) | Non- Arsenic-PSCs | China | Dua et al. (2015) |
Hong Kong chunbaidaye water spinach (Daye) | Arsenic-PSCs | Hong Kong, China | Wang et al. (2009) |
cv. YQ | Low-Cd-Pb | China | Junliang Xin et al. (2012) |
cv. GDB | High-Cd-Pb | China | Baifei Huang et al. (2012) |
Salween | Small bamboo-like leaves and Suitable for the hot rainy season | Northern Thailand, Vietnam, southern China | Grubben (2004) |
Liao | Bamboo-like leaves for the dry season | Northern Thailand, Vietnam, southern China | Grubben (2004) |
Chinwin | Branching cultivar | Northern Thailand, Vietnam, southern China | Cornelis et al. (1985) |
Rights and permissions
Copyright information
© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this chapter
Cite this chapter
Gangopadhyay, M., Das, A.K., Bandyopadhyay, S., Das, S. (2021). Water Spinach (Ipomoea aquatica Forsk.) Breeding. In: Al-Khayri, J.M., Jain, S.M., Johnson, D.V. (eds) Advances in Plant Breeding Strategies: Vegetable Crops. Springer, Cham. https://doi.org/10.1007/978-3-030-66969-0_5
Download citation
DOI: https://doi.org/10.1007/978-3-030-66969-0_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-66968-3
Online ISBN: 978-3-030-66969-0
eBook Packages: Biomedical and Life SciencesBiomedical and Life Sciences (R0)