Abstract
Cultivated rocket salad (Eruca vesicaria Mill.) is a fast-growing annual herbaceous plant characterized by leaves with a peculiar pungent taste and strong flavor. The crop, native to the Mediterranean Basin and western Asia, is widespread in all habitable continents as a leafy vegetable. Its consumption can be fresh as a topping on many dishes or mixed in salad packages. Leaves can be an ingredient in preparations such as purees, sauces, pesto or liqueurs. Secondary uses in cosmetics and medicine occur due to related depurative and anti-inflammatory effects. Although it is not an intensive crop, attention must be given to increased productivity. Indeed, appropriate soil preparation and good water availability are necessary to improve the production and the qualitative profile. Rocket salad contains a range of health-promoting compounds including glucosinolates, flavonoids carotenoids, vitamins, fiber and polyphenols. The richness of these compounds suggests a role for rocket in the prevention of common degenerative diseases in human. The content of these phytochemicals is influenced by genotypic factors, cultivation and processing conditions. The overall increase in cultivated area and related consumption requires a concerted effort to create new varieties which are well suited to face the challenges of climate change, emerging diseases or novel trends in consumption. Thus, breeding targets are addressed for the improvement of nutritional properties and shelf life, and to increase resistance to biotic and abiotic factors like diseases, insects, drought and salinity. In this chapter, we present an overview of the origin, economic and nutraceutical importance, genetic resource characterization and conservation, resistance to biotic and abiotic stresses and breeding objectives of rocket salad.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Acikgoz FE (2011) The effects of different sowing time practices on vitamin C and mineral material content for rocket (Eruca vesicaria subsp sativa (Mill)). Sci Res Essays 6(15):3127–3131
Adikwu E, Deo O (2013) Hepatoprotective effect of vitamin C (ascorbic acid). Pharmacol Pharm 4(1):84–92. https://doi.org/10.4236/pp.2013.41012
Agneta R, Lelario F, De Maria S et al (2014) Glucosinolate profile and distribution among plant tissues and phenological stages of field-grown horseradish. Phytochemistry 106:178–187. https://doi.org/10.1016/j.phytochem.2014.06.019
Agnihotri A, Gupta V, Lakshmikumaran MS et al (1990) Production of Eruca-Brassica hybrids by embryo rescue. Plant Breed 104:281–289. https://doi.org/10.1111/j.1439-0523.1990.tb00437.x
Ahuja I, Rohloff J, Bones AM (2010) Defence mechanisms of Brassicaceae: implications for plant-insect interactions and potential for integrated pest management. A review. Agron Sustain Dev 30:311–348. https://doi.org/10.1051/agro/2009025
Albuquerque GMR, Silva AMF, Silva JR et al (2016) First report of bacterial wilt caused by Ralstonia pseudosolanacearum on Eruca vesicaria subsp sativa in Brazil. Plant Dis 100(11):2319. https://doi.org/10.1094/PDIS-04-16-0420-PDN
Angelino D, Dosz E, Sun J et al (2015) Myrosinase-dependent and -independent formation and control of isothiocyanate products of glucosinolate hydrolysis. Front Plant Sci 6:831. https://doi.org/10.3389/fpls.2015.00831
Ashor AW, Brown R, Keenan PD et al (2019) Limited evidence for a beneficial effect of vitamin C supplementation on biomarkers of cardiovascular diseases: an umbrella review of systematic reviews and meta-analyses. Nutr Res 61:1–12. https://doi.org/10.1016/j.nutres.2018.08.005
Bakhshandeh E, Pirdashti H, Vahabinia F, Gholamhossieni M (2020) Quantification of the effect of environmental factors on seed germination and seedling growth of Eruca (Eruca sativa) using mathematical models. J Plant Growth Regul 39:190–204. https://doi.org/10.1007/s00344-019-09974-1
Barazani O, Quaye M, Ohali S et al (2012) Photo-thermal regulation of seed germination in natural populations of Eruca sativa Miller (Brassicaceae). J Arid Environ 85:93–96. https://doi.org/10.1016/j.jaridenv.2012.06.011
Barba FJ, Esteve MJ, Frígola A (2014) Bioactive components from leaf vegetable products. In: Atta-ur-Rahman FRS (ed) Studies in natural products chemistry, vol 41. Academic/Elsevier Inc, San Diego, pp 321–346
Barbieri G, Bottino A, Di Stasio E et al (2011) Proline and light as quality enhancers of rocket (Eruca sativa Miller) grown under saline conditions. Sci Hort 128(4):393–400
Barillari J, Canistro D, Paolini M et al (2005) Direct antioxidant activity of purified glucoerucin, the dietary secondary metabolite contained in rocket (Eruca sativa Mill) seeds and sprouts. J Agric Food Chem 53(7):2475–2482. https://doi.org/10.1021/jf047945a
Bell L, Wagstaff C (2017) Enhancement of glucosinolate and isothiocyanate profiles in brassicaceae crops: addressing challenges in breeding for cultivation, storage, and consumer-related traits. J Agric Food Chem 65(43):9379–9403. https://doi.org/10.1021/acs.jafc.7b03628
Bell L, Wagstaff C (2019) Rocket science: a review of phytochemical & health-related research in Eruca & Diplotaxis species. Food Chem X 1:100002. https://doi.org/10.1016/j.fochx.2018.100002
Bell L, Oruna-Concha MJ, Wagstaff C (2015) Identification and quantification of glucosinolate and flavonol compounds in rocket salad (Eruca sativa, Eruca vesicaria and Diplotaxis tenuifolia) by LC-MS: highlighting the potential for improving nutritional value of rocket crops. Food Chem 172:852–861. https://doi.org/10.1016/j.foodchem.2014.09.116
Bell L, Spadafora ND, Müller CT et al (2016) Use of TD-GC-TOF-MS to assess volatile composition during post-harvest storage in seven accessions of rocket salad (Eruca sativa). Food Chem 194:626–636. https://doi.org/10.1016/j.foodchem.2015.08.043
Bell L, Methven L, Signore A et al (2017a) Analysis of seven salad rocket (Eruca sativa) accessions: the relationships between sensory attributes and volatile and non-volatile compounds. Food Chem 218:181–191. https://doi.org/10.1016/j.foodchem.2016.09.076
Bell L, Yahya HN, Oloyede OO et al (2017b) Changes in rocket salad phytochemicals within the commercial supply chain: glucosinolates, isothiocyanates, amino acids and bacterial load increase significantly after processing. Food Chem 221:521–534. https://doi.org/10.1016/j.foodchem.2016.11.154
Bell L, Chadwick M, Puranik M et al (2020) The Eruca sativa genome and transcriptome: a targeted analysis of sulfur metabolism and glucosinolate biosynthesis pre and postharvest. Front Plant Sci. https://doi.org/10.3389/fpls.2020.525102
Bennett RN, Mellon FA, Botting NP et al (2002) Identification of the major glucosinolate (4-mercaptobutyl glucosinolate) in leaves of Eruca sativa L. (salad rocket). Phytochemistry 61(1):25–30. https://doi.org/10.1016/s0031-9422(02)00203-0
Bennett RN, Rosa EAS, Mellon FA, Kroon PA (2006) Ontogenic profiling of glucosinolates, flavonoids, and other secondary metabolites in Eruca sativa (salad rocket), Diplotaxis erucoides (wall rocket), Diplotaxis tenuifolia (wild rocket), and Bunias orientalis (Turkish rocket). J Agric Food Chem 54(11):4005–4015. https://doi.org/10.1021/jf052756t
Bennett RN, Carvalho R, Mellon FA et al (2007) Identification and quantification of glucosinolates in sprouts derived from seeds of wild Eruca sativa L. (salad rocket) and Diplotaxis tenuifolia L. (wild rocket) from diverse geographical locations. J Agric Food Chem 55:67–74. https://doi.org/10.1021/jf061997d
BGV-UPM (2020) Banco de germoplasma vegetal-UPM “César Gómez Campo”. Colecciones. Accessed 2 Nov 2020. http://www.bancodegermoplasma.upm.es/colecciones.html
Bhandari DC, Chandel KPS (1997) Status of rocket germplasm in India: research accomplishments and priorities. In: Padulosi S, Pignone D (eds) Rocket: a Mediterranean crop for the world, Report of a workshop, Legnaro, Padova, Italy, 13–14 December, vol 1996. International Plant Genetic Resources Institute, Bioversity International, Rome, pp 67–75
Bianco VV, Boari F (1997) Up-to-date developments on wild rocket cultivation. In: Padulosi S, Pignone D (eds) Rocket: a Mediterranean crop for the world, Report of a workshop, Legnaro (Padova), Italy, 13–14 December, vol 1996. International Plant Genetic Resources Institute, Bioversity International, Rome, pp 41–49
Boiteux LS, Fonseca MEN, Reis A et al (2016) Wild radish (Raphanus spp.) and garden rocket (Eruca sativa) as new brassicaceae hosts of Tomato chlorosis virus in South America. Plant Dis 100(5):1027. https://doi.org/10.1094/PDIS-09-15-1069-PDN
Bondonno CP, Blekkenhorst LC, Liu AH et al (2018) Vegetable-derived bioactive nitrate and cardiovascular health. Mol Asp Med 61:83–91. https://doi.org/10.1016/j.mam.2017.08.001
Bozokalfa MK, Yagmur B, Ilbi H et al (2009) Genetic variability for mineral concentration of Eruca sativa L. and Diplotaxis tenuifolia L. accessions. Crop Breed Appl Biot 9:372–381. https://doi.org/10.12702/1984-7033.v09n04a12
Bozokalfa MK, Eşiyok D, İlbi H et al (2011) Evaluation of phenotypic diversity and geographical variation of cultivated (Eruca sativa L.) and wild (Diplotaxis tenuifolia L.) rocket plant. Plant Genet Resour 9(3):454–563. https://doi.org/10.1017/S1479262111000657
Bull CT, du Toit LJ (2009) First report of bacterial blight on conventionally and organically grown arugula in Nevada caused by Pseudomonas syringae pv alisalensis. Plant Dis 93(1):109. https://doi.org/10.1094/PDIS-93-1-0109A
Bull CT, Ortiz-Lytle MC, Ibarra AG et al (2015) First report of bacterial blight of crucifers caused by Pseudomonas cannabina pv alisalensis in Minnesota on arugula (Eruca vesicaria subsp sativa). Plant Dis 99(3):415. https://doi.org/10.1094/PDIS-10-14-1020-PDN
Caruso G, Parrella G, Giorgini M, Nicoletti R (2018) Crop systems, quality and protection of Diplotaxis tenuifolia. Agriculture 8:55. https://doi.org/10.3390/agriculture8040055
Cataldi TRI, Rubino A, Lelario F, Bufo SA (2007) Naturally occurring glucosinolates in plant extracts of rocket salad (Eruca sativa L.) identified by liquid chromatography coupled with negative ion electrospray ionization and quadrupole ion-trap mass spectrometry. Rapid Commun Mass Spectrom 21(14):2374–2388. https://doi.org/10.1002/rcm.3101
Chatterjee C, Rai JN (1974) Fusarium wilt of Eruca sativa: observation on comparative pathogenicity of some strains of Fusarium oxysporum. Indian Phytopath 27:309–311
Chen K, Zhang XB, Jiang JL, Wang XY (2011) Plantlet regeneration from cotyledon, cotyledon petiole, and hypocotyl explants via somatic embryogenesis pathway in roquette (Eruca sativa Mill). Plant Biosyst 145:68–76
Chen K, Wu HJ, Chen FJ (2012) Somatic embryogenesis and mass spectrometric identification of proteins related to somatic embryogenesis in Eruca sativa. Plant Biotech Rep 6:113–122
Choe U, Yu LL, Wang TTY (2018) The science behind microgreens as an exciting new food for the 21st century. J Agric Food Chem 66(44):11519–11530. https://doi.org/10.1021/acs.jafc.8b03096
Choi YJ, Park MJ, Kim JY, Shin HD (2010) An unnamed Hyaloperonospora sp. causing downy mildew on arugula (rocket) in Korea. New Dis Rep 21:1
Choi YJ, Kruse J, Thines M (2018) Hyaloperonospora erucae sp. nov. (Peronosporaceae; Oomycota), the downy mildew pathogen of arugula (Eruca sativa). Eur J Plant Pathol 151(2):549–555. https://doi.org/10.1007/s10658-017-1389-0
Chun JH, Arasu MV, Lim YP, Kim SJ (2013) Variation of major glucosinolates in different varieties and lines of rocket salad. Hort Environ Biotech 54(3):206–213. https://doi.org/10.1007/s13580-013-0122-y
Chun JH, Kim S, Arasu MV et al (2017) Combined effect of nitrogen, phosphorus and potassium fertilizers on the contents of glucosinolates in rocket salad (Eruca sativa Mill). Saudi J Biol Sci 24(2):436–443. https://doi.org/10.1016/j.sjbs.2015.08.012
Ciska E, Drabińska N, Honke J, Narwojsz A (2015) Boiled Brussels sprouts: a rich source of glucosinolates and the corresponding nitriles. J Funct Foods 19:91–99. https://doi.org/10.1016/j.jff.2015.09.008
Coelho PS, Valério L, Monteiro AA (2017) Sources of resistance to downy mildew disease in wild rocket crop. In: Abstracts of the 3rd general meeting EU Cost Action FA1306 – the quest for tolerant varieties: phenotyping at plant and cellular level, ITQB-NOVA, Oeiras, Portugal, 27–28 March 2017
Colonna E, Rouphael Y, Barbieri G, De Pascale S (2016) Nutritional quality of ten leafy vegetables harvested at two light intensities. Food Chem 199:702–710. https://doi.org/10.1016/j.foodchem.2015.12.068
D’Antuono LF, Elementi S, Neri R (2008) Glucosinolates in Diplotaxis and Eruca leaves: diversity, taxonomic relations and applied aspects. Phytochemistry 69(1):187–199. https://doi.org/10.1016/j.phytochem.2007.06.019
Dai LJ, Li X, Guan CY, Zhong J (2004) On ovary and embryo culture of hybrid between rapeseeds and rocket salad. J Hunan Agric Univ 30:201–204
Di Gioia F, Avato P, Serio F, Argentieri MP (2018) Glucosinolate profile of Eruca sativa, Diplotaxis tenuifolia and Diplotaxis erucoides grown in soil and soilless systems. J Food Compost Anal 69:197–204. https://doi.org/10.1016/j.jfca.2018.01.022
Egea-Gilabert C, Fernández JA, Migliaro D et al (2009) Genetic variability in wild vs. cultivated Eruca vesicaria populations as assessed by morphological, agronomical and molecular analyses. Sci Hort 121(3):260–266. https://doi.org/10.1016/j.scienta.2009.02.020
Esteban R, Fleta-Soriano E, Buezo J et al (2014) Enhancement of zeaxanthin in two-steps by environmental stress induction in rocket and spinach. Food Res Int 65:207–214. https://doi.org/10.1016/j.foodres.2014.05.044
European Commission (2011) Commission Regulation (EU) No 1258/2011 of 2 December (2011) amending Regulation (EC) No 1881/(2006) as regards maximum levels for nitrates in foodstuffs. Off J Europ Union L320:15–17
Fall ML, Van der Heyden H, Carisse O (2016) A quantitative dynamic simulation of Bremia lactucae airborne conidia concentration above a lettuce canopy. PLoS ONE 11(3):e0144573. https://doi.org/10.1371/journalpone0144573
Fallahi HR, Fadaeian G, Gholami M et al (2015) Germination response of grasspea (Lathyrus sativus L.) and arugula (Eruca sativa L.) to osmotic and salinity stresses. Plant Breed Seed Sci 71:97–108. https://doi.org/10.1515/plass-2015-0025
Fechner J, Kaufmann M, Herz C et al (2018) The major glucosinolate hydrolysis product in rocket (Eruca sativa L.), sativin, is 1,3-thiazepane-2-thione: elucidation of structure, bioactivity, and stability compared to other rocket isothiocyanates. Food Chem 261:57–65. https://doi.org/10.1016/j.foodchem.2018.04.023
Fontana E, Nicola S (2009) Traditional and soilless culture systems to produce corn salad (Valerianella olitoria L.) and rocket (Eruca sativa Mill.) with low nitrate content. J Food Agric Environ 7(2):405–410
Garg G, Sharma V (2014) Eruca sativa (L.): Botanical description, crop improvement, and medicinal properties. Int J Geogr Inf Syst 20(2):171–182. https://doi.org/10.1080/10496475.2013.848254
Garg G, Sharma V (2015) Assessment of fatty acid content and genetic diversity in Eruca sativa (L.) (Taramira) using ISSR markers. Biomass Bioenergy 75:118–129. https://doi.org/10.1016/j.biombioe.2015.03.010
Garibaldi A, Gilardi G, Gullino ML (2003) First report of Fusarium oxysporum on Eruca vesicaria and Diplotaxis spp. in Europe. Plant Dis 87(2):201. https://doi.org/10.1094/PDIS.2003.87.2.201A
Garibaldi A, Gilardi G, Pasquali M et al (2004) Seed transmission of Fusarium oxysporum of Eruca vesicaria and Diplotaxis muralis. J Plant Dis Prot 111(4):345–350
Garibaldi A, Gilardi G, Gullino ML (2006) Evidence for an expanded host range of Fusarium oxysporum f.sp. raphani. Phytoparasitica 34(2):115–121
Garibaldi A, Gilardi G, Bertoldo C, Gullino ML (2011a) First report of leaf spot of rocket (Eruca sativa) caused by Fusarium equiseti in Italy. Plant Dis 95(10):1315. https://doi.org/10.1094/PDIS-03-11-0220
Garibaldi A, Gilardi G, Bertoldo C, Gullino ML (2011b) First report of leaf spot of wild (Diplotaxis tenuifolia) and cultivated (Eruca vesicaria) rocket caused by Alternaria japonica in Italy. Plant Dis 95(10):1316. https://doi.org/10.1094/PDIS-04-11-0280
Garibaldi A, Gilardi G, Puglisi I et al (2016) First report of leaf spot caused by Colletotrichum kahawae on cultivated rocket (Eruca sativa) in Italy. Plant Dis 100(6):1240. https://doi.org/10.1094/PDIS-11-15-1243-PDN
GBIS/I (2020) Genebank Information System of the IPK Gatersleben. Accessed 2 Nov 2020. https://gbis.ipk-gatersleben.de/gbis2i/faces/index.jsf
Gilardi G, Chen G, Garibaldi A et al (2007) Resistance of different rocket cultivars to wilt caused by strains of Fusarium oxysporum under artificial inoculation conditions. J Plant Pathol 89(1):113–117
Gilardi G, Gullino ML, Garibaldi A (2013) New disease of wild and cultivated rocket in Italy. Acta Hort 1005:569–572. https://doi.org/10.17660/ActaHortic.2013.1005.70
Göker M, Voglmayr H, García-Blázquez G, Oberwinkler F (2009) Species delimitation in downy mildews: the case of Hyaloperonospora in the light of nuclear ribosomal ITS and LSU sequences. Mycol Res 113:308–325. https://doi.org/10.1016/j.mycres.2008.11.006
Gómez-Campo C (2003) Morphological characterization of Eruca vesicaria (Cruciferae) germplasm. Bocconea 16(2):615–624. ISSN 11:20–4060
Gómez-Campo C (2007) Assessing the contribution of genebanks: the case of the UPM seed bank in Madrid. Plant Genet Resour Newsl 151:40–49
González-Benito ME, Pérez-García F, Tejeda G, Gómez-Campo C (2011) Effect of the gaseous environment and water content on seed viability of four Brassicaceae species after 36 years storage. Seed Sci Tech 39:443–451. https://doi.org/10.15258/sst.2011.39.2.16
Guijarro-Real C, Rodríguez-Burruezo A, Prohens J et al (2017) Influence of the growing conditions in the content of vitamin C in Diplotaxis erucoides. Bull UASVM Hort 74(2):144–146. https://doi.org/10.15835/buasvmcn-hort:0011
Guijarro-Real C, Navarro A, Festa G et al (2020) Large scale phenotyping and molecular analysis in a germplasm collection of rocket salad (Eruca vesicaria) reveal a differentiation of the gene pool by geographical origin. Euphytica 216:53. https://doi.org/10.1007/s10681-020-02586-x
Gullino ML, Gilardi G, Garibaldi A (2019) Ready-to-eat salad crops: a plant pathogen’s heaven. Plant Dis 103(9):2153–2170. https://doi.org/10.1094/PDIS-03-19-0472-FE
Gunasinghe N, You MP, Lanoiselet V et al (2013) First report of powdery mildew caused by Erysiphe cruciferarum on Brassica campestris var. pekinensis, B. carinata, Eruca sativa, E. vesicaria in Australia and on B. rapa and B. oleracea var. capitata in Western Australia. Plant Dis 97(9):1256. doi:https://doi.org/10.1094/PDIS-03-13-0299-PDN
Gutiérrez DR, Char C, Escalona VH et al (2015) Application of UV-C radiation in the conservation of minimally processed rocket (Eruca sativa Mill). J Food Process Preserv 39(6):3117–3127. https://doi.org/10.1111/jfpp.12577
Gutiérrez DR, Chaves AR, Rodríguez SC (2017) Use of UV-C and gaseous ozone as sanitizing agents for keeping the quality of fresh-cut rocket (Eruca sativa Mill). J Food Process Preserv 41(3):e12968. https://doi.org/10.1111/jfpp.12968
Gutiérrez DR, Chaves AR, Rodríguez SC (2018) UV-C and ozone treatment influences on the antioxidant capacity and antioxidant system of minimally processed rocket (Eruca sativa Mill). Postharvest Biol Technol 138:107–113. https://doi.org/10.1016/j.postharvbio.2017.12.014
Guzman I, Yousef GG, Brown AF (2012) Simultaneous extraction and quantitation of carotenoids, chlorophylls, and tocopherols in Brassica vegetables. J Agric Food Chem 60(29):7238–7244. https://doi.org/10.1021/jf302475d
Hall MKD, Jobling JJ, Rogers GS (2012) Some perspectives on rocket as a vegetable crop: a review. Veg Crops Res Bull 76:21–41. https://doi.org/10.2478/v10032-012-0002-5
Hanschen FS, Schreiner M (2017) Isothiocyanates, nitriles, and epithionitriles from glucosinolates are affected by genotype and developmental stage in Brassica oleracea varieties. Front Plant Sci 8:1095. https://doi.org/10.3389/fpls.2017.01095
Hladilova JJ (2010) Downy mildew caused by Hyaloperonospora (Peronospora) spp. on wild rocket (Diplotaxis tenuifolia) and other crops from Brassicaceae family. Master thesis, Norwegian University of Life Sciences
IPGRI (1999) Descriptors for rocket (Eruca spp.). International Plant Genetic Resources Institute, Rome
Ishida M, Hara M, Fukino N et al (2014) Glucosinolate metabolism, functionality and breeding for the improvement of Brassicaceae vegetables. Breed Sci 64(1):48–59. https://doi.org/10.1270/jsbbs.64.48
Jakhar ML, Jajoria RN, Sharma KC, Ram S (2010) Genetic divergence in taramira (Eruca sativa Mill.). J Oilseed Brassica 1(2):79–83
Jin J, Koroleva OA, Gibson T et al (2009) Analysis of phytochemical composition and chemoprotective capacity of rocket (Eruca sativa and Diplotaxis tenuifolia) leafy salad following cultivation in different environments. J Agric Food Chem 57:5227–5234. https://doi.org/10.1021/jf9002973
Katsarou D, Omirou M, Liadaki K et al (2016) Glucosinolate biosynthesis in Eruca sativa. Plant Physiol Biochem 109:452–466. https://doi.org/10.1016/j.plaphy.2016.10.024
Kim SJ, Ishii G (2006) Glucosinolate profiles in the seeds, leaves and roots of rocket salad (Eruca sativa Mill.) and antioxidative activities of intact plant powder and purified 4-methoxyglucobrassicin. Soil Sci Plant Nutr 52(3):394–400. https://doi.org/10.1111/j.1747-0765.2006.00049.x
Kim SJ, Jin S, Ishii G (2004) Isolation and structural elucidation of 4-(β-D-glucopyranosyldisulfanyl)butyl glucosinolate from leaves of rocket salad (Eruca sativa L.) and its antioxidative activity. Biosci Biotechnol Biochem 68:2444–2450. https://doi.org/10.1271/bbb.68.2444
Kim SJ, Kawaharada C, Ishii G (2006) Effect of ammonium: nitrate nutrient ratio on nitrattee and glucosinolate contents of hydroponically-grown rocket salad (Eruca sativa Mill.). Soil Sci Plant Nutr 52(3):387–393. https://doi.org/10.1111/j.1747-0765.2006.00048.x
Koike ST (1998) Downy mildew of arugula, caused by Peronospora parasitica, in California. Plant Dis 82(9):1063. https://doi.org/10.1094/PDIS.1998.82.9.1063B
Kyriacou MC, Soteriou GA, Colla G, Rouphael Y (2019) The occurrence of nitrate and nitrite in Mediterranean fresh salad vegetables and its modulation by preharvest practices and postharvest conditions. Food Chem 285:468–477. https://doi.org/10.1016/j.foodchem.2019.02.001
Larran S, Ronco L, Mónaco C, Andreau RH (2006) First report of Peronospora parasitica on rocket (Eruca sativa) in Argentina. Australas Plant Pathol 35(3):377–378. https://doi.org/10.1071/AP06024
Latinović J, Latinović N, Jakše J, Radišek S (2019) First report of white rust of rocket (Eruca sativa) caused by Albugo candida in Montenegro. Plant Dis 103(1):163. https://doi.org/10.1094/PDIS-05-18-0784-PDN
Leskovsek L, Jakse M, Bohanec B (2008) Doubled haploid production in rocket (Eruca sativa Mill.) through isolated microspore culture. Plant Cell Tissue Organ Cult 93(2):181–189. https://doi.org/10.1007/s11240-008-9359-z
Mangwende E, Kabengele JBK, Truter M, Aveling TAS (2015) First report of white rust of rocket (Eruca sativa) caused by Albugo candida in South Africa. Plant Dis 99(2):290. https://doi.org/10.1094/PDIS-09-14-0947-PDN
Martínez-Ballesta M, Moreno-Fernández DA, Castejón D et al (2015) The impact of the absence of aliphatic glucosinolates on water transport under salt stress in Arabidopsis thaliana. Front Plant Sci 6:524. https://doi.org/10.3389/fpls.2015.00524
Martínez-Sánchez A, Llorach R, Gil MI, Ferreres F (2007) Identification of new flavonoid glycosides and flavonoid profiles to characterize rocket leafy salads (Eruca vesicaria and Diplotaxis tenuifolia). J Agric Food Chem 55(4):1356–1363. https://doi.org/10.1021/jf063474b
Matsuzawa Y, Mekiyanon S, Kaneko Y et al (1999) Male sterility in alloplasmic Brassica rapa L. carrying Eruca sativa cytoplasm. Plant Breed 118:82–84
Merete O, Henrik R, Hans K (2008) Novel rucola plants with cytoplasmic male sterility (cms) – Patent WO(2008)084329 A2
Minuto G, Pensa P, Rapa B et al (2004) The downy mildew of Diplotaxis tenuifolia (L.) D.C. in Italy. Inf Fitopatol 54(9):57–60
Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassay with tobacco tissue cultures. Physiol Plant 15:473–497
Nothnagel T, Klocke E, Schrader O et al (2016) Development of male sterile Eruca sativa carrying a Raphanus sativus/Brassica oleracea cybrid cytoplasm. Theor Appl Genet 129:331–344. https://doi.org/10.1007/s00122-015-2630-x
NPGS (2020) U.S. National Plant Germplasm System. Accessions. Accessed 2 Nov 2020. https://npgsweb.ars-grin.gov/gringlobal/search.aspx
Padulosi S, Pignone D (eds) (1997) Rocket: a Mediterranean crop for the world, Report of a workshop, Legnaro (Padova), Italy, 13–14 December 1996. International Plant Genetic Resources Institute, Bioversity International, Rome
Pane C, Sigillo L, Caputo M et al (2017) Response of rocket salad germplasm (Eruca and Diplotaxis spp.) to major pathogens causing damping-off, wilting and leaf spot diseases. Arch Phytopathol Plant Protect 50(3–4):167–177. https://doi.org/10.1080/03235408.2017.1285511
Pasini F, Verardo V, Caboni MF, D’Antuono LF (2012) Determination of glucosinolates and phenolic compounds in rocket salad by HPLC-DAD-MS: evaluation of Eruca sativa Mill. and Diplotaxis tenuifolia L. genetic resources. Food Chem 133(3):1025–1033. https://doi.org/10.1016/j.foodchem.2012.01.021
Patel JS, Costa de Novaes MI, Zhang S (2014) First report of Colletotrichum higginsianum causing anthracnose of arugula (Eruca sativa) in Florida. Plant Dis 98(9):1269. https://doi.org/10.1094/PDIS-09-13-0926-PDN
Paz Lima ML, Café-Filho AC, Nogueira NL et al (2004) First report of clubroot of Eruca sativa caused by Plasmodiophora brassicae in Brazil. Plant Dis 88(5):573. https://doi.org/10.1094/PDIS.2004.88.5.573B
Pérez-García F, González-Benito ME, Gómez-Campo C (2007) High viability recorded in ultra-dry seeds of 37 species of Brassicaceae after almost 40 years of storage. Seed Sci Tech 35:143–153
Pignone D (1997) Present status of rocket genetic resources and conservation activities. In: Padulosi S, Pignone D (eds) Rocket: a Mediterranean crop for the world, Report of a workshop, Legnaro (Padova), Italy 13–14 December 1996. International Plant Genetic Resources Institute, Rome. ISBN 92-9043-337-X
Pignone D, Gómez-Campo C (2011) Eruca. In: Kole C (ed) Wild crop relatives: genomic and breeding resources. Oilseeds. Springer, Heidelberg, pp 149–160
Pimpini F, Enzo M (1997) Present status and prospects for rocket cultivation in the Veneto region. In: Padulosi S, Pignone D (eds) Rocket: a Mediterranean crop for the world, Report of a workshop, Legnaro (Padova), Italy, 13–14 December 1996. International Plant Genetic Resources Institute, Bioversity International, Rome, pp 51–66
Quijano L, Yusà V, Font G et al (2017) Risk assessment and monitoring programme of nitrates through vegetables in the Region of Valencia (Spain). Food Chem Toxicol 100:42–49. https://doi.org/10.1016/j.fct.2016.12.010
Raffo A, Masci M, Moneta E et al (2018) Characterization of volatiles and identification of odor-active compounds of rocket leaves. Food Chem 240:1161–1170. https://doi.org/10.1016/j.foodchem.2017.08.009
Romeo L, Iori R, Rollin P et al (2018) Isothiocyanates: an overview of their antimicrobial activity against human infections. Molecules 23(3):624. https://doi.org/10.3390/molecules23030624
Romero AM, Zapata R (2005) First report of downy mildew of arugula caused by Peronospora parasitica in Argentina. Plant Dis 89(6):688. https://doi.org/10.1094/PD-89-0688B
Romero AM, Zapata R, Montecchia MS (2008) First report of black rot on arugula caused by Xanthomonas campestris pv. campestris in Argentina. Plant Dis 92(6):980. https://doi.org/10.1094/PDIS-92-6-0980C
Rosenthal ER, Ramos Sepulveda L, Bull CT, Koike ST (2018) First report of black rot caused by Xanthomonas campestris on arugula in California. Plant Dis 102(5):1025. https://doi.org/10.1094/PDIS-10-17-1538-PDN
Rossetto MRM, Mizuzo Shiga T, Vianello F, Pereira Lima GP (2013) Analysis of total glucosinolates and chromatographically purified benzylglucosinolate in organic and conventional vegetables. LWT-Food Sci Tech 50(1):247–252. https://doi.org/10.1016/j.lwt.2012.05.022
Santamaria P (2006) Nitrate in vegetables: toxicity, content, intake and EC regulation. J Sci Food Agric 86(1):10–17. https://doi.org/10.1002/jsfa.2351
Santamaria P, Elia A, Serio F (2002) Effect of solution nitrogen concentration on yield, leaf element content, and water and nitrogen use efficiency of three hydroponically-grown rocket salad genotypes. J Plant Nutr 25(2):245–258. https://doi.org/10.1081/PLN-100108833
Scheck HJ, Koike ST (1999) First occurrence of white rust of arugula, caused by Albugo candida. Plant Dis 83(9):877. https://doi.org/10.1094/PDIS.1999.83.9.877D
Sharma N, Bajaj M, Shivanna KR (1985) Overcoming self-incompatibility through the use of lectins and sugars in Petunia and Eruca. Ann Bot 55:139–141
Sharma RK, Agrawal HR, Sastry EVD (1991) Taramira: importance, research and constraints. SKN College of Agriculture (Rajasthan Agricultural University), Jobner, Rajasthan (mimeo)
Sikdar SR, Chatterjee G, Das S, Sen SK (1990) ‘Erussica’, the intergeneric fertile somatic hybrid developed through protoplast fusion between Eruca sativa Lam. and Brassica juncea (L.) Czern. Theor Appl Genet 79(4):561–567
Slater SM (2013) Biotechnology of Eruca sativa Mill. In: Jain S, Gupta SD (eds) Biotechnology of neglected and underutilized crops. Springer, Dordrecht, pp 203–216. https://doi.org/10.1007/978-94-007-5500-0_9
Soroka J, Grenkow L (2013) Susceptibility of brassicaceous plants to feeding by flea beetles, Phyllotreta spp. (Coleoptera: Chrysomelidae). J Econ Entomol 106(6):2557–2567. https://doi.org/10.1603/ec13102
Sun W, Guan C, Meng Y et al (2005) Intergeneric crosses between Eruca sativa Mill. and Brassica species. Acta Agron Sin 31(1):36–42
Taranto F, Francese G, Di Dato F et al (2016) Leaf metabolic, genetic, and morphophysiological profiles of cultivated and wild rocket salad (Eruca and Diplotaxis spp.). J Agric Food Chem 64(29):5824–5836. https://doi.org/10.1021/acs.jafc.6b01737
Thines M, Choi YJ (2016) Evolution, diversity, and taxonomy of the Peronosporaceae, with focus on the genus Peronospora. Phytopathology 106(1):6–18. https://doi.org/10.1094/PHYTO-05-15-0127-RVW
Tidwell TE, Blomquist CL, Rooney-Latham S, Scheck HJ (2014) Leaf spot of arugula, caused by Alternaria japonica, in California. Plant Dis 98(9):1272. https://doi.org/10.1094/PDIS-01-14-0084-PDN
Tripodi P, Francese G, Mennella G (2017) Rocket salad: crop description, bioactive compounds and breeding perspectives. Adv Hort Sci 31(2):107–113. https://doi.org/10.13128/ahs-21087
Verma SC, Malik R, Dhir I (1977) Genetics of the incompatibility system in the crucifer Eruca sativa L. Proc Roy Soc Lond B 96:131–159
Vernieri P, Borghesi E, Ferrante A, Magnani G (2005) Application of biostimulants in floating system for improving rocket quality. J Food Agric Environ 3:86–88
Villatoro-Pulido M, Priego-Capote F, Alvarez-Sanchez B et al (2013) An approach to the phytochemical profiling of rocket [Eruca sativa (Mill.) Thell]. J Sci Food Agric 93:3809–3819. https://doi.org/10.1002/jsfa.6286
Wang X, Fan H, Zhu H et al (2009) Analysis of self-compatibility in Eruca sativa Mill. In: Proceedings of genetics and breeding: genetics and germplasm, pp 374–376
Wang Y, Chu P, Yang Q et al (2014) Complete mitochondrial genome of Eruca sativa Mill. (Garden rocket). PLoS One 9(8):e105748. https://doi.org/10.1371/journal.pone.0105748
Warwick SI, Gugel RK, Gomez-Campo C, James T (2007) Genetic variation in Eruca vesicaria (L.) Cav. Plant Genet Resour 5(3):142–153. https://doi.org/10.1017/S1479262107842675
Xiao Z, Lester GE, Luo Y, Wang Q (2012) Assessment of vitamin and carotenoid concentrations of emerging food products: edible microgreens. J Agric Food Chem 60(31):7644–7651. https://doi.org/10.1021/jf300459b
Xiao Z, Codling E, Luo Y et al (2016) Microgreens of Brassicaceae: mineral composition and content of 30 varieties. J Food Compost Anal 49:87–93. https://doi.org/10.1016/j.jfca.2016.04.006
Zafar-Pashanezhad M, Shahbazi E, Golkar P, Shiran B (2020) Genetic variation of Eruca sativa L. genotypes revealed by agro-morphological traits and ISSR molecular markers. Ind Crops Prod (145:111992). https://doi.org/10.1016/j.indcrop.2019.111992
Zapata R, Romero AM, Maseda PH (2005) First report of white rust of arugula caused by Albugo candida in Argentina. Plant Dis 89(2):207. https://doi.org/10.1094/PD-89-0207C
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Appendix I: Research Institutes Relevant to Arugula or Rocket Salad (Eruca vesicaria ssp. sativa)
Appendix I: Research Institutes Relevant to Arugula or Rocket Salad (Eruca vesicaria ssp. sativa)
Institution name | Specialization | Address | Email and website |
---|---|---|---|
Centre for Genetic Resources (CGN) | Germplasm bank | Wageningen University, 6708PB Wageningen The Netherlands | |
Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK) | Germplasm bank | Corrensstraße 3, 06466 Gatersleben, Germany | |
Germplasm Resources Information Network (USDA-GRIN) | Germplasm bank | United States | |
Universidad Politécnica de Madrid (UPM) | Germplasm bank | 28,040 Madrid, Spain | |
Millennium Seeds Bank KEW | Germplasm bank | United Kingdom | |
Research Centre for Vegetable and Ornamental Crops (CREA-OF) | Breeding, genetics, agronomy, pathology | Via Cavalleggeri 25, Pontecagnano-Faiano 84,098, Italy | e-mail: pasquale.tripodi@crea.gov.it, https://www.crea.gov.it/en/web/orticoltura-e-florovivaismo |
Instituto Nacional de Investigação Agrária e Veterinária (IP) | Agronomy, breeding, genetics | Av. da República, Quinta do Marquês, 2784–505 Oeiras, Portugal | e-mail: paula.coelho@iniav.pt; http://www.iniav.pt/ |
Rights and permissions
Copyright information
© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this chapter
Cite this chapter
Tripodi, P., Coelho, P.S., Guijarro-Real, C. (2021). Breeding Advances and Prospects in Rocket Salad (Eruca vesicaria ssp. sativa Mill.) Cultivation. In: Al-Khayri, J.M., Jain, S.M., Johnson, D.V. (eds) Advances in Plant Breeding Strategies: Vegetable Crops. Springer, Cham. https://doi.org/10.1007/978-3-030-66969-0_3
Download citation
DOI: https://doi.org/10.1007/978-3-030-66969-0_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-66968-3
Online ISBN: 978-3-030-66969-0
eBook Packages: Biomedical and Life SciencesBiomedical and Life Sciences (R0)