Abstract
Enoki is a popular edible mushroom well recognized for its culinary, nutritional and medicinal properties. Owing to its popularity, enoki cultivation has been rapidly expanded in the recent years in China and Japan. Bioactive compounds such as flammulinolide, enokipodin, proflamin and other polysaccharides extracted from both mycelium and fruiting bodies have demonstrated possible antitumor, anti-hypertension, anti-hypercholesterolemia and other therapeutic benefits. The life cycle of enoki mushroom is similar to that of other basidiomycetes and exhibits dedikaryotization which can produce both monokaryotic and dikaryotic fruiting bodies. Morphological variations in cultivated edible strains are clearly distinguished as Jinhua and Jinzhen types. Based on the available literature, it was observed that the yellow strains (Jinhua) may be domesticated directly from the wild strains while the cultivated white (Jinzhen) strains may have evolved through hybridization between wild cultivars. Genetic diversity studies indicate that the cultivated strains have a relatively narrow genetic base. With the increased pace in production activity, the need for genetic improvement of enoki has attained significance. This chapter reviews the available literature relating to the biology, sexuality, breeding behavior, conventional and molecular breeding approaches aimed at the genetic improvement of enoki mushroom.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ando A, Harada A, Miura K, Tamai Y (2001) A gene encoding a hydrophobin, fvh1, is specifically expressed after the induction of fruiting in the edible mushroom Flammulina velutipes. Curr Genet 39:190–197. https://doi.org/10.1007/s002940100193
Bas C (1983) Flammulina in western Europe. Persoonia molecular phylogeny. Evol Fungi 12:51–66
Chang Y-C, Hsiao Y-M, Wu M-F et al (2013) Interruption of lung cancer cell migration and proliferation by fungal immunomodulatory protein FIP-fve from Flammulina velutipes. J Agric Food Chem 61:12044–12052. https://doi.org/10.1021/jf4030272
Cho J, Lee S, Chang W, Cha J (2006) Agrobacterium-mediated transformation of the winter mushroom, Flammulina velutipes. Mycobiology 34:104–107. https://doi.org/10.4489/MYCO.2006.34.2.104
Fultz S (1988) Fruiting at high temperature and its genetic control in the basidiomycete Flammulina velutipes. Appl Environ Microbiol 54:2460–2463
Ge ZW, Yang ZL, Zhang P et al (2008) Flammulina species from China inferred by morphological and molecular data. Fungal Divers 32:59–68. https://www2.clarku.edu/faculty/dhibbett/Reprints%20PDFs/Ge-2008-Flammulina.pdf
Gu Y-H, Leonard J (2006) In vitro effects on proliferation, apoptosis and colony inhibition in ER-dependent and ER-independent human breast cancer cells by selected mushroom species. Oncol Rep 15:417–423
Hu Y-N, Sung T-J, Chou C-H et al (2019) Characterization and antioxidant activities of yellow strain Flammulina velutipes (Jinhua mushroom) polysaccharides and their effects on ROS content in L929 cell. Antioxidants 8:298. https://doi.org/10.3390/antiox8080298
Huang L-H, Lin H-Y, Lyu Y-T et al (2019) Development of a transgenic Flammulina velutipes oral vaccine for hepatitis B. Food Tech Biotech 57:105. https://doi.org/10.17113/ftb.57.01.19.586
Hughes KW, McGhee LL, Methven AS et al (1999) Patterns of geographic speciation in the genus Flammulina based on sequences of the ribosomal ITS1-5.8S-ITS2 area. Mycologia 91:978–986. https://doi.org/10.1080/00275514.1999.12061107
Kang L, Lin J, Huang X et al (2013) Genetic transformation of Flammulina velutipes with taxadiene synthase gene. Sci Tech Food Ind 34(2):190–193
Kim E-S, Woo S-I, Oh M et al (2015a) Characteristics of “Baekjung”, a variety adaptable to high temperature in Flammulina velutipes. J Mushr 13:203–206. https://doi.org/10.14480/JM.2015.13.3.203
Kim M-J, Chang W-B, Choi J-S et al (2015b) Characteristics and breeding of a new brown variety “Geumhyang” with short cultivation period in Flammulina velutipes. J Mushr 13:92–96. https://doi.org/10.14480/JM.2015.13.2.92
Kim M-J, Chang W-B, Choi J-S et al (2015c) Characteristics and breeding of a new brown variety “Heukhyang” with good taste in Flammulina velutipes. J Mushr 13:103–107. https://doi.org/10.14480/JM.2015.13.2.103
Kim M-J, Lee K-W, Chang W-B et al (2018) Characteristics and breeding of “Geumhyang2ho”, a new brown and labor-saving variety of Flammulina velutipes. J Mushr 16:293–298. https://doi.org/10.14480/JM.2018.16.4.293
Kniep H (1920) Uber morphologische und physiologische Geschlechts differ enzierung (UntersuchungenanBasidiomyzeeten). Verh Phys-Med GesWurzbg 46:1–18
Kong W-S, Cho Y-H, Jhune C-S et al (2004) Breeding of Flammulina velutipes strains adaptable to elevated-temperature. Mycobiol 32:11. https://doi.org/10.4489/MYCO.2004.32.1.011
Kong W-S, Jang K, Chang Y et al (2013) Breeding progress and characterization of a Korean white variety ‘Baek-A’ in Flammulina velutipes. J Mushr 11:159–163. https://doi.org/10.4489/MYCO.2004.32.1.011
Kong W-S, You C-H, Yoo Y-B et al (2014) Molecular marker related to fruit body color of Flammulina velutipes. Korean Soc Mycol 32:6–10. https://doi.org/10.4489/MYCO.2004.32.1.006
Kuo M (2013) Flammulina velutipes. In: MushroomExpert.Com. http://www.mushroomexpert.com/flammulina_velutipes.html. Accessed 5 Apr 2020
Kuo C-Y, Chou S-Y, Huang C-T (2004) Cloning of glyceraldehyde-3-phosphate dehydrogenase gene and use of the gpd promoter for transformation in Flammulina velutipes. Appl Microbiol Biotech 65:593–599. https://doi.org/10.1007/s00253-004-1635-1
Kurata A, Fukuta Y, Mori M et al (2016) Draft genome sequence of the basidiomycetous fungus Flammulina velutipes TR19. Genome Announc 4:e00505–e00516. https://doi.org/10.1128/genomeA.00505-16
Lee Y-T, Lee S-S, Sun H-L et al (2013) Effect of the fungal immunomodulatory protein FIP-fve on airway inflammation and cytokine production in mouse asthma model. Cytokine 61:237–244. https://doi.org/10.1016/j.cyto.2012.09.024
Li X, Li Y (2014) Quality comparison and analysis on white Flammulina velutipes grown with bottle lines in China. Edible Fungi China 33:20–24
Lin YJ, Liu WT, Stark H, Huang CT (2015) Expression of enterovirus 71 virus-like particles in transgenic enoki (Flammulina velutipes). Appl Microbiol Biotech 99:6765–6774. https://doi.org/10.1007/s00253-015-6588-z
Ling J, Yanxia W, Zhongjun Z, Shuqun H (2000) Breeding new strains of Flammulina velutipes by protoplast radiation induction. Acta Hort Sin 27:65–66
Lin-Zhi K, Fei H, Jun-Fang L et al (2013) Breeding of new high-temperature-tolerant strains of Flammulina velutipes. Sci Hortic 151:97–102. https://doi.org/10.1016/J.SCIENTA.2012.12.024
Liu W, Xie B, Wang X, Jiang Y (2005) Studies on RAPD markers of color gene in Flammulina velutipes. Chinese Agric Sci Bull 21:54–56. http://europepmc.org/article/CBA/613731
Liu F, Wang W, Chen B-Z, Xie B-G (2015) Homocitrate synthase expression and lysine content in fruiting body of different developmental stages in Flammulina velutipes. Curr Microbiol 70:821–828. https://doi.org/10.1007/s00284-015-0791-0
Liu XB, Feng B, Li J et al (2016) Genetic diversity and breeding history of winter mushroom (Flammulina velutipes) in China uncovered by genomic SSR markers. Gene 591:227–235. https://doi.org/10.1016/J.GENE.2016.07.009
Liu XB, Li J, Yang ZL (2018) Genetic diversity and structure of core collection of winter mushroom (Flammulina velutipes) developed by genomic SSR markers. Hereditas 155:3. https://doi.org/10.1186/s41065-017-0038-0
Lu H, Zhang D, Zhang L, Wang R, Shang X, Tan Q (2015) Association analysis of five agronomic traits with SSR markers in Flammulina velutipes germplasm. J Agric Biotech 23:96–106
Maehara T, Tomita S, Takabatake K, Kaneko S (2010) Improvement of the transformation efficiency of Flammulina velutipes Fv-1 using the glyceraldehyde-3-phosphate dehydrogenase gene promoter. Bio Sci Bio Tech Biochem 74:2523–2525. https://doi.org/10.1271/bbb.100556
Meiying G (1997) The selection and breeding of new strains of Flammulina velutipes in China. Acta Edulis Fungi 4:8–14. http://en.cnki.com.cn/Article_en/CJFDTotal-SYJB199701001.htm
Ouyang P, Li Q, Guo L (2018) Establishment of a CRISPR/Cas9 system for editing cold-induced Gene HK1/HK2 in Flammulina velutipes. Acta Edulis Fungi 25:1–7. https://doi.org/10.16488/j.cnki.1005-9873.2018.03.001
Palapala VA, Aimi T, Inatomi S, Morinaga T (2002) ITS-PCR-RFLP method for distinguishing commercial cultivars of edible mushroom, Flammulina velutipes. J Food Sci 67:2486–2490. https://doi.org/10.1111/j.1365-2621.2002.tb08763.x
Park S-Y, Van Peer AF, Jang K-Y et al (2010) Agrobacterium-mediated transformation using gill tissue of Flammulina velutipes. Korean J Mycol 38:48–53. https://doi.org/10.4489/kjm.2010.38.1.048
Park Y-J, Baek JH, Lee S et al (2014) Whole genome and global gene expression analyses of the model mushroom Flammulina velutipes reveal a high capacity for lignocellulose degradation. PLoS One 9:e93560. https://doi.org/10.1371/journal.pone.0093560
Rabeea MA, Owaid MN, Aziz AA et al (2020) Mycosynthesis of gold nanoparticles using the extract of Flammulina velutipes, physalacriaceae, and their efficacy for decolorization of methylene blue. J Environ Chem Engin 103841 (in press). https://doi.org/10.1016/j.jece.2020.103841
Rahman MA, Abdullah N, Aminudin N (2015) Antioxidative effects and inhibition of human low density lipoprotein oxidation in vitro of polyphenolic compounds in Flammulina velutipes (golden needle mushroom). Oxidative Med Cell Longev 403023:2015. https://doi.org/10.1155/2015/403023
Sakamoto Y, Ando A, Tamai Y, Yajima T (2007) Pileus differentiation and pileus-specific protein expression in Flammulina velutipes. Fungal Genet Biol 44:14–24. https://doi.org/10.1016/j.fgb.2006.06.002
Shi L, Chen D, Xu C et al (2017) Highly-efficient liposome-mediated transformation system for the basidiomycetous fungus Flammulina velutipes. J Gen Appl Microbiol 63:179–185. https://doi.org/10.2323/jgam.2016.10.003
Simchen G (1965) Variation in a dikaryotic population of Collybia velutipes. Genetics 51:709–721. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1210804/
Singh M, Kamal S (2017) Genetic aspects and strategies for obtaining hybrids. In: Zied DC, Pardo-Gimnez A (eds) Edible and medicinal mushrooms. John Wiley, Chichester, pp 35–87. https://doi.org/10.1002/9781119149446.ch4
Su H, Wang L, Liu L et al (2008) Use of inter-simple sequence repeat markers to develop strain-specific SCAR markers for Flammulina velutipes. J Appl Genet 49:233–235. https://doi.org/10.1007/BF03195619
Takemaru T (1957) Genetics of Collybia velutipes, III growth rates of certain strains. Biol J Okayama Univ 3:182–186
Tao Q, Ma K, Yang Y et al (2016) Bioactive sesquiterpenes from the edible mushroom Flammulina velutipes and their biosynthetic pathway confirmed by genome analysis and chemical evidence. J Org Chem 81:9867–9877. https://doi.org/10.1021/acs.joc.6b01971
Van Peer AF, Park S-Y, Shin P-G et al (2011) Comparative genomics of the mating-type loci of the mushroom Flammulina velutipes reveals widespread synteny and recent inversions. PLoS One 6:e22249. https://doi.org/10.1371/journal.pone.0022249
Vandendries R (1923) Recherches sur le determinism sexuel des basiodiomycetes. Mem Cl Sci Acad R Belg Collect 2:1–98
Wang BN, Yang ZQ, Yang XH (2007) Breeding of a new strain of Flammulina velutipes by γ-rays induced mutation. Henan Sci 16(05):325–327
Wang PM, Liu XB, Dai YC et al (2018a) Phylogeny and species delimitation of Flammulina: taxonomic status of winter mushroom in East Asia and a new European species identified using an integrated approach. Mycol Prog 17:1013–1030. https://doi.org/10.1007/s11557-018-1409-2
Wang Q, Zhang J, Li C et al (2018b) Phenotypic and genetic diversity of the culinary-medicinal winter mushroom Flammulina velutipes (Agaricomycetes) in China. Int J Med Mushr 20:517–536. https://doi.org/10.1615/IntJMedMushrooms.2018026253
Woo S-I, Kong W-S, Jang KY (2017a) Characteristics of ‘Baekseung’, a new cultivar Flammulina velutipes. J Mushr 15:25–30. https://doi.org/10.14480/JM.2017.15.1.25
Woo S-I, Seo K-I, Jang KY et al (2017b) Genetic relationships of collected strains using simple sequence repeat (SSR) marker in Flammulina velutipes. Korean Soc Mushr Sci 21:171. http://db.koreascholar.com/article.aspx?code=348533
Wu T, Ye Z, Guo L et al (2018) De novo transcriptome sequencing of Flammulina velutipes uncover candidate genes associated with cold-induced fruiting. J Basic Microbiol 58:698–703. https://doi.org/10.1002/jobm.201800037
Wu T, Hu C, Xie B et al (2019) A single transcription factor PDD1 determines development and yield of winter mushroom Flammulina velutipes. Appl Environ Microbiol. https://doi.org/10.1128/AEM.01735-19
Wu T, Zhang Z, Hu C et al (2020) A WD40 protein encoding gene Fvcpc2 positively regulates mushroom development and yield in Flammulina velutipes. Front Microbiol 11:498. https://doi.org/10.3389/fmicb.2020.00498
Xu Z, Shang XD, Guo Q et al (2009) Cross-breeding and selection of Flammulina velutipes G1, an early maturing hybrid. Acta Edulis Fungi 16:20–22. http://syjb.chinajournal.net.cn/
Xu Z-Y, Li H, Zhang P (2015) Behavior of nuclei in life cycle of Flammulina velutipes. Mycosystema 34:386–393. https://doi.org/10.13346/j.mycosystema.140069
Yali C, Baocheng Z, Liangliang L, Qingyu L (1995) A study on ultraviolet mutagenesis of Flammulina velutipes protoplasts. Acta Edulis Fungi 3:S646. http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYJB199503012.htm
Yamada M, Sakuraba S, Shibata K et al (2006) Isolation and analysis of genes specifically expressed during fruiting body development in the basidiomycete Flammulina velutipes by fluorescence differential display. FEMS Microbiol Lett 254:165–172. https://doi.org/10.1111/j.1574-6968.2005.00023.x
Yamada M, Kurano M, Inatomi S et al (2008) Isolation and characterization of a gene coding for chitin deacetylase specifically expressed during fruiting body development in the basidiomycete Flammulina velutipes and its expression in the yeast Pichia pastoris. FEMS Microbiol Lett 289:130–137. https://doi.org/10.1111/j.1574-6968.2008.01361.x
Yang CX, Zhang RY, Zuo XM et al (2007) Genetic diversity of Flammulina velutipes determined by ISSR marker. Edible Fungi China 26:37.S646.15. http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZSYJ200704014.htm
Yang M, Yu J, Zhao L et al (2015) Polysaccharides from Flammulina velutipes improve scopolamine-induced impairment of learning and memory of rats. J Funct Foods 18:411–422. https://doi.org/10.1016/j.jff.2015.08.003
Yaowei L, Wenxin F, Zhang S (2002) Induced mutations of variety of high yield of Flammulina velutipes SOD by He-Ne laser – abstract – Europe PMC. Acta Laser Biol Sin 11:283–286
Yea U-H, Yoo Y-B, Park Y-H, Shin G-C (1988) Isolation of protoplasts from Flammulina velutipes. Korean J Mycol 16:70–78. http://www.koreascience.or.kr/article/JAKO198803040077565.page
Yoo YB, Kong WS, Oh SJ et al (2004) Fruiting body development and genetic analysis of somatic hybrids by protoplast fusion in edible fungi. J Mushroom Sci Prod 2(3):115–126
Yoon H, You Y, Woo J et al (2012) The mitochondrial genome of the white-rot fungus Flammulina velutipes. J Gen Appl Microbiol 58:331–337. https://doi.org/10.2323/jgam.58.331
Zattler E (1924) Verebungsstudienan Hutpilzen (Basidiomyceten). Z Bot 16:433–499
Zhang R, Hu D, Zhang J et al (2010) Development and characterization of simple sequence repeat (SSR) markers for the mushroom Flammulina velutipes. J Biosci Bioeng 110:273–275. https://doi.org/10.1016/j.jbiosc.2010.04.001
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Appendix I: Research Institutes Relevant to Enoki Mushroom
Appendix I: Research Institutes Relevant to Enoki Mushroom
Institution name | Research activities | Contact information and website |
---|---|---|
Indian Council of Agricultural Research (ICAR), Directorate of Mushroom Research | Strategic and applied research on collection, conservation, utilization and production of edible and medicinal mushroom. This include research on genetic improvement of edible mushrooms, mushroom protection technologies, mushroom production technologies, and postharvest and preservation technologies | Chambaghat, Solan, Himachal Pradesh State 173213, India |
Shanghai Academy of Agricultural Sciences Edible Fungi Institute | Breeding and production of varieties | 35 Nanhua Rd., Minhang District, Shanghai, China |
Gyeongnam National University of Science and Technology | Breeding and production of varieties | 33 Dongjin-ro, Jinju, Korea |
Mushroom Research Division, National Institute of Horticultural & Herbal Science | Breeding of enoki varieties | 100, Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do, Korea |
Rights and permissions
Copyright information
© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this chapter
Cite this chapter
Sharma, V.P., Barh, A., Bairwa, R.K., Annepu, S.K., Kumari, B., Kamal, S. (2021). Enoki Mushroom (Flammulina velutipes (Curtis) Singer) Breeding. In: Al-Khayri, J.M., Jain, S.M., Johnson, D.V. (eds) Advances in Plant Breeding Strategies: Vegetable Crops. Springer, Cham. https://doi.org/10.1007/978-3-030-66969-0_11
Download citation
DOI: https://doi.org/10.1007/978-3-030-66969-0_11
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-66968-3
Online ISBN: 978-3-030-66969-0
eBook Packages: Biomedical and Life SciencesBiomedical and Life Sciences (R0)