Skip to main content

XNAP: Making LSTM-Based Next Activity Predictions Explainable by Using LRP

  • Conference paper
  • First Online:
Business Process Management Workshops (BPM 2020)

Abstract

Predictive business process monitoring (PBPM) is a class of techniques designed to predict behaviour, such as next activities, in running traces. PBPM techniques aim to improve process performance by providing predictions to process analysts, supporting them in their decision making. However, the PBPM techniques’ limited predictive quality was considered as the essential obstacle for establishing such techniques in practice. With the use of deep neural networks (DNNs), the techniques’ predictive quality could be improved for tasks like the next activity prediction. While DNNs achieve a promising predictive quality, they still lack comprehensibility due to their hierarchical approach of learning representations. Nevertheless, process analysts need to comprehend the cause of a prediction to identify intervention mechanisms that might affect the decision making to secure process performance. In this paper, we propose XNAP, the first explainable, DNN-based PBPM technique for the next activity prediction. XNAP integrates a layer-wise relevance propagation method from the field of explainable artificial intelligence to make predictions of a long short-term memory DNN explainable by providing relevance values for activities. We show the benefit of our approach through two real-life event logs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note definitions are inspired by the work of Taymouri et al. [23].

  2. 2.

    https://data.mendeley.com/datasets/39bp3vv62t/1.

  3. 3.

    https://data.4tu.nl/repository/uuid:a7ce5c55-03a7-4583-b855-98b86e1a2b07.

  4. 4.

    https://keras.io.

  5. 5.

    https://www.tensorflow.org.

  6. 6.

    https://github.com/fau-is/xnap.

References

  1. Arras, L., et al.: Explaining and interpreting LSTMs. In: Samek, W., Montavon, G., Vedaldi, A., Hansen, L.K., Müller, K.-R. (eds.) Explainable AI: Interpreting, Explaining and Visualizing Deep Learning. LNCS (LNAI), vol. 11700, pp. 211–238. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-28954-6_11

    Chapter  Google Scholar 

  2. Arras, L., Montavon, G., Müller, K.R., Samek, W.: Explaining recurrent neural network predictions in sentiment analysis. In: Proceedings of the 8th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis, pp. 159–168. ACL (2017)

    Google Scholar 

  3. Bach, S., Binder, A., Montavon, G., Klauschen, F., Müller, K.R., Samek, W.: On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation. PLoS ONE 10(7), e0130140 (2015)

    Article  Google Scholar 

  4. Barredo Arrieta, A., et al.: Explainable artificial intelligence (XAI): concepts, taxonomies, opportunities and challenges toward responsible AI. Inf. Fusion 58, 82–115 (2020)

    Article  Google Scholar 

  5. Breuker, D., Matzner, M., Delfmann, P., Becker, J.: Comprehensible predictive models for business processes. MIS Q. 40(4), 1009–1034 (2016)

    Article  Google Scholar 

  6. Di Francescomarino, C., Ghidini, C., Maggi, F.M., Milani, F.: Predictive process monitoring methods: which one suits me best? In: Weske, M., Montali, M., Weber, I., vom Brocke, J. (eds.) BPM 2018. LNCS, vol. 11080, pp. 462–479. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98648-7_27

    Chapter  Google Scholar 

  7. Di Francescomarino, C., Ghidini, C., Maggi, F.M., Petrucci, G., Yeshchenko, A.: An eye into the future: leveraging a-priori knowledge in predictive business process monitoring. In: Carmona, J., Engels, G., Kumar, A. (eds.) BPM 2017. LNCS, vol. 10445, pp. 252–268. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-65000-5_15

    Chapter  Google Scholar 

  8. Du, M., Liu, N., Hu, X.: Techniques for interpretable machine learning. Commun. ACM 63(1), 68–77 (2019)

    Article  Google Scholar 

  9. Evermann, J., Rehse, J.R., Fettke, P.: Predicting process behaviour using deep learning. Decis. Support Syst. 100, 129–140 (2017)

    Article  Google Scholar 

  10. Gunning, D.: Explainable artificial intelligence (XAI). Defense Adv. Res. Projects Agency 2, 1–18 (2017)

    Google Scholar 

  11. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  12. Keskar, N.S., Mudigere, D., Nocedal, J., Smelyanskiy, M., Tang, P.T.P.: On large-batch training for deep learning: generalization gap and sharp minima. In: Proceedings of the 5th International Conference on Learning Representations, pp. 1–16 (2017) openreview.net

    Google Scholar 

  13. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436 (2015)

    Article  Google Scholar 

  14. Maggi, F.M., Di Francescomarino, C., Dumas, M., Ghidini, C.: Predictive monitoring of business processes. In: Jarke, M., Mylopoulos, J., Quix, C., Rolland, C., Manolopoulos, Y., Mouratidis, H., Horkoff, J. (eds.) CAiSE 2014. LNCS, vol. 8484, pp. 457–472. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07881-6_31

    Chapter  Google Scholar 

  15. Márquez-Chamorro, A., Resinas, M., Ruiz-Cortás, A.: Predictive monitoring of business processes: a survey. Trans. Serv. Comput. 11, 1–18 (2017)

    Google Scholar 

  16. Mehdiyev, N., Fettke, P.: Prescriptive process analytics with deep learning and explainable artificial intelligence. In: Proceedings of the 28th European Conference on Information Systems, AISeL (2020)

    Google Scholar 

  17. Nunes, I., Jannach, D.: A systematic review and taxonomy of explanations in decision support and recommender systems. User Model. User-Adap. Inter. 27(3–5), 393–444 (2017)

    Article  Google Scholar 

  18. Rehse, J.R., Mehdiyev, N., Fettke, P.: Towards explainable process predictions for industry 4.0 in the DFKI-smart-lego-factory. Künstliche Intelligenz 33(2), 181–187 (2019)

    Google Scholar 

  19. Ribeiro, M.T., Singh, S., Guestrin, C.: “Why should I trust you?” Explaining the predictions of any classifier. In: Proceedings of the 22nd International Conference on Knowledge Discovery and Data Mining, pp. 1135–1144 (2016)

    Google Scholar 

  20. Schwegmann, B., Matzner, M., Janiesch, C.: preCEP: facilitating predictive event-driven process analytics. In: vom Brocke, J., Hekkala, R., Ram, S., Rossi, M. (eds.) DESRIST 2013. LNCS, vol. 7939, pp. 448–455. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38827-9_36

    Chapter  Google Scholar 

  21. Senderovich, A., Di Francescomarino, C., Ghidini, C., Jorbina, K., Maggi, F.M.: Intra and inter-case features in predictive process monitoring: a tale of two dimensions. In: Carmona, J., Engels, G., Kumar, A. (eds.) BPM 2017. LNCS, vol. 10445, pp. 306–323. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-65000-5_18

    Chapter  Google Scholar 

  22. Sindhgatta, R., Ouyang, C., Moreira, C., Liao, Y.: Interpreting predictive process monitoring benchmarks. arXiv:1912.10558 (2019)

  23. Taymouri, F., La Rosa, M., Erfani, S., Bozorgi, Z.D., Verenich, I.: Predictive business process monitoring via generative adversarial nets: the case of next event prediction. arXiv:2003.11268 (2020)

  24. Verenich, I., Dumas, M., La Rosa, M., Nguyen, H.: Predicting process performance: a white-box approach based on process models. J. Softw. Evol. Process 31(6), e2170 (2019)

    Article  Google Scholar 

  25. Weinzierl, S., et al.: An empirical comparison of deep-neural-network architectures for next activity prediction using context-enriched process event logs. arXiv:2005.01194 (2020)

  26. Weinzierl, S., Revoredo, K.C., Matzner, M.: Predictive business process monitoring with context information from documents. In: Proceedings of the 27th European Conference on Information Systems, pp. 1–10. AISeL (2019)

    Google Scholar 

Download references

Acknowledgments

This project is funded by the German Federal Ministry of Education and Research (BMBF) within the framework programme Software Campus under the number 01IS17045. The fourth author received a grand from Österreichische Akademie der Wissenschaften.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sven Weinzierl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Weinzierl, S., Zilker, S., Brunk, J., Revoredo, K., Matzner, M., Becker, J. (2020). XNAP: Making LSTM-Based Next Activity Predictions Explainable by Using LRP. In: Del Río Ortega, A., Leopold, H., Santoro, F.M. (eds) Business Process Management Workshops. BPM 2020. Lecture Notes in Business Information Processing, vol 397. Springer, Cham. https://doi.org/10.1007/978-3-030-66498-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-66498-5_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-66497-8

  • Online ISBN: 978-3-030-66498-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics