Skip to main content

Combining Lévy Walks and Flocking for Cooperative Surveillance Using Aerial Swarms

  • Conference paper
  • First Online:
Multi-Agent Systems and Agreement Technologies (EUMAS 2020, AT 2020)

Abstract

Continuous area coverage missions are a fundamental part of many swarm robotics applications. One of such missions is cooperative surveillance, where the main aim is to deploy a swarm for covering predefined areas of interest simultaneously by k robots, leading to better overall sensing accuracy. However, without prior knowledge of the location of these areas, robots need to continuously explore the domain, so that up-to-date data is gathered while maintaining the benefits of simultaneous observations. In this paper, we propose a model for a swarm of unmanned aerial vehicles to successfully achieve cooperative surveillance. Our model combines the concept of Lévy Walk for exploration and Reynolds’ flocking rules for coordination. Simulation results clearly show that our model outperforms a simple collision avoidance mechanism, commonly found in Lévy-based multi-robot systems. Further preliminary experiments with real robots corroborate the idea.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://youtu.be/KvEs7wQ0Ti4.

References

  1. Şahin, E.: Swarm robotics: from sources of inspiration to domains of application. In: Şahin, E., Spears, W.M. (eds.) SR 2004. LNCS, vol. 3342, pp. 10–20. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-30552-1_2

    Chapter  Google Scholar 

  2. Vargas, P.A., Benhalen, A.M., Pessin, G., Osório, F.S.: Applying particle swarm optimization to a garbage and recycling collection problem. In: 2012 12th UK Workshop on Computational Intelligence (UKCI), pp. 1–8. IEEE (2012)

    Google Scholar 

  3. Pessin, G., et al.: Swarm intelligence and the quest to solve a garbage and recycling collection problem. Soft. Comput. 17(12), 2311–2325 (2013)

    Article  Google Scholar 

  4. Couceiro, M.S., Rocha, R.P., Ferreira, N.M.F., Vargas, P.A.: Darwinian robotic swarms for exploration with minimal communication. In: 2013 IEEE Congress on Evolutionary Computation, pp. 127–134 (2013)

    Google Scholar 

  5. Griffiths Sànchez, N.D., Vargas, P.A., Couceiro, M.S.: A darwinian swarm robotics strategy applied to underwater exploration. In: 2018 IEEE Congress on Evolutionary Computation (CEC), pp. 1–6 (2018)

    Google Scholar 

  6. Oliveira, G.M.B., et al.: A cellular automata-based path-planning for a cooperative and decentralized team of robots. In: 2019 IEEE Congress on Evolutionary Computation (CEC), pp. 739–746 (2019)

    Google Scholar 

  7. Artaxo, P.G., Bourgois, A., Sardinha, H., Vieira, H., de Paiva, E.C., Fioravanti, A.R., Vargas, P.A.: Autonomous cooperative flight control for airship swarms (2020). https://arxiv.org/abs/2004.07665

  8. Couceiro, M.S., Vargas, P.A., Rocha, R.P., Ferreira, N.M.F.: Benchmark of swarm robotics distributed techniques in a search task. Robot. Auton. Syst. 62(2), 200–213 (2014)

    Article  Google Scholar 

  9. Saska, M., et al.: Autonomous deployment of swarms of micro-aerial vehicles in cooperative surveillance. In: 2014 International Conference on Unmanned Aircraft Systems (ICUAS), pp. 584–595. IEEE (2014)

    Google Scholar 

  10. Artaxo, P.G., et al.: Control of multiple airships for autonomous surveillance and target tracking. In: XIII Brazilian International Symposium in Intelligent Automation, pp. 771–778 (2017)

    Google Scholar 

  11. Din, A., Jabeen, M., Zia, K., Khalid, A., Saini, D.K.: Behavior-based swarm robotic search and rescue using fuzzy controller. Comput. Electr. Eng. 70, 53–65 (2018)

    Article  Google Scholar 

  12. Costa, F.G., Ueyama, J., Braun, T., Pessin, G., Osório, F.S., Vargas, P.A.: The use of unmanned aerial vehicles and wireless sensor network in agricultural applications. In: 2012 IEEE International Geoscience and Remote Sensing Symposium, pp. 5045–5048 (2012)

    Google Scholar 

  13. Faiçal, B.S., et al.: The use of unmanned aerial vehicles and wireless sensor networks for spraying pesticides. J. Syst. Architect. 60(4), 393–404 (2014)

    Article  Google Scholar 

  14. Albani, D., Ijsselmuiden, J., Haken, R., Trianni, V.: Monitoring and mapping with robot swarms for agricultural applications. In: 2017 14th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS), pp. 1–6. IEEE (2017)

    Google Scholar 

  15. Chung, S.-J., Paranjape, A.A., Dames, P., Shen, S., Kumar, V.: A survey on aerial swarm robotics. IEEE Trans. Robot. 34(4), 837–855 (2018)

    Article  Google Scholar 

  16. Albani, D., Manoni, T., Nardi, D., Trianni, V.: Dynamic UAV swarm deployment for non-uniform coverage. In: Proceedings of the 17th International Conference on Autonomous Agents and MultiAgent Systems, pp. 523–531. International Foundation for Autonomous Agents and Multiagent Systems (2018)

    Google Scholar 

  17. Petrlík, M., Vonásek, V., Saska, M.: Coverage optimization in the cooperative surveillance task using multiple micro aerial vehicles. In: 2019 IEEE International Conference on Systems, Man and Cybernetics (SMC), pp. 4373–4380. IEEE (2019)

    Google Scholar 

  18. Jiguo, Y., Wan, S., Cheng, X., Dongxiao, Y.: Coverage contribution area based \(k\)-coverage for wireless sensor networks. IEEE Trans. Veh. Technol. 66(9), 8510–8523 (2017)

    Google Scholar 

  19. Elhoseny, M., Tharwat, A., Yuan, X., Hassanien, A.E.: Optimizing k-coverage of mobile WSNs. Exp. Syst. Appl. 92, 142–153 (2018)

    Article  Google Scholar 

  20. Reynolds, A.M., Smith, A.D., Menzel, R., Greggers, U., Reynolds, D.R., Riley, J.R.: Displaced honey bees perform optimal scale-free search flights. Ecology 88(8), 1955–1961 (2007)

    Article  Google Scholar 

  21. Sims, D.W., et al.: Scaling laws of marine predator search behaviour. Nature 451(7182), 1098 (2008)

    Article  Google Scholar 

  22. Sun, Q., Fei, H., Yeqing, W., Huang, X.: Primate-inspired adaptive routing in intermittently connected mobile communication systems. Wirel. Netw. 20(7), 1939–1954 (2014)

    Article  Google Scholar 

  23. Bénichou, O., Loverdo, C., Moreau, M., Voituriez, R.: Intermittent search strategies. Rev. Mod. Phys. 83(1), 81 (2011)

    Article  MATH  Google Scholar 

  24. Zaburdaev, V., Denisov, S., Klafter, J.: Lévy walks. Rev. Mod. Phys. 87(2), 483 (2015)

    Article  Google Scholar 

  25. Pasternak, Z., Bartumeus, F., Grasso, F.W.: Lévy-taxis: a novel search strategy for finding odor plumes in turbulent flow-dominated environments. J. Phys. A: Math. Theor. 42(43), 434010 (2009)

    Article  Google Scholar 

  26. Sutantyo, D., Levi, P., Möslinger, C., Read, M.: Collective-adaptive Lévy flight for underwater multi-robot exploration. In: 2013 Mechatronics and Automation (ICMA), pp. 456–462. IEEE (2013)

    Google Scholar 

  27. Floreano, D., Mattiussi, C.: Bio-inspired Artificial Intelligence: Theories, Methods, and Technologies. MIT Press, Cambridge (2008)

    Google Scholar 

  28. Reynolds, C.W.: Flocks, herds and schools: a distributed behavioral model. ACM SIGGRAPH Comput. Graph. 21, 25–34 (1987)

    Article  Google Scholar 

  29. Nigam, N., Bieniawski, S., Kroo, I., Vian, J.: Control of multiple UAVs for persistent surveillance: algorithm and flight test results. IEEE Trans. Control Syst. Technol. 20(5), 1236–1251 (2011)

    Article  Google Scholar 

  30. Keller, J., Thakur, D., Likhachev, M., Gallier, J., Kumar, V.: Coordinated path planning for fixed-wing UAS conducting persistent surveillance missions. IEEE Trans. Autom. Sci. Eng. 14(1), 17–24 (2016)

    Article  Google Scholar 

  31. Michael, N., Stump, E., Mohta, K.: Persistent surveillance with a team of MAVs. In: 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2708–2714. IEEE (2011)

    Google Scholar 

  32. Li, W.: Persistent surveillance for a swarm of micro aerial vehicles by flocking algorithm. Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 229(1), 185–194 (2015)

    Article  Google Scholar 

  33. Costa, F.G., Ueyama, J., Braun, T., Pessin, G., Osório, F.S., Vargas, P.A.: The use of unmanned aerial vehicles and wireless sensor network in agricultural applications. In: 2012 IEEE International Geoscience and Remote Sensing Symposium, pp. 5045–5048. IEEE (2012)

    Google Scholar 

  34. Faiçal, B.S., et al.: The use of unmanned aerial vehicles and wireless sensor networks for spraying pesticides. J. Syst. Arch. 60(4), 393–404 (2014)

    Article  Google Scholar 

  35. Elhoseny, M., Tharwat, A., Farouk, A., Hassanien, A.E.: K-coverage model based on genetic algorithm to extend WSN lifetime. IEEE Sens. Lett. 1(4), 1–4 (2017)

    Article  Google Scholar 

  36. Kumar, S., Lai, T.H., Balogh, J.: On k-coverage in a mostly sleeping sensor network. In: Proceedings of the 10th Annual International Conference on Mobile Computing and Networking, pp. 144–158. ACM (2004)

    Google Scholar 

  37. Khoufi, I., Minet, P., Laouiti, A., Mahfoudh, S.: Survey of deployment algorithms in wireless sensor networks: coverage and connectivity issues and challenges. Int. J. Auton. Adapt. Commun. Syst. 10(4), 341–390 (2017)

    Article  Google Scholar 

  38. Sutantyo, D.K., Kernbach, S., Levi, P., Nepomnyashchikh, V.A.: Multi-robot searching algorithm using lévy flight and artificial potential field. In: 2010 IEEE International Workshop on Safety Security and Rescue Robotics (SSRR), pp. 1–6. IEEE (2010)

    Google Scholar 

  39. Keeter, M., et al.: Cooperative search with autonomous vehicles in a 3D aquatic testbed. In: 2012 American Control Conference (ACC), pp. 3154–3160. IEEE (2012)

    Google Scholar 

  40. Suarez, J., Murphy, R.: A survey of animal foraging for directed, persistent search by rescue robotics. In: IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR), pp. 314–320. IEEE (2011)

    Google Scholar 

  41. Bartumeus, F., da Luz, M.G.E., Viswanathan, G.M., Catalan, J.: Animal search strategies: a quantitative random-walk analysis. Ecology 86(11), 3078–3087 (2005)

    Article  Google Scholar 

  42. Deshpande, A., Kumar, M., Ramakrishnan, S.: Robot swarm for efficient area coverage inspired by ant foraging: the case of adaptive switching between Brownian motion and Lévy flight. In: ASME 2017 Dynamic Systems and Control Conference (2017)

    Google Scholar 

  43. Harris, T.H., et al.: Generalized Lévy walks and the role of chemokines in migration of effector CD8+ T cells. Nature 486(7404), 545 (2012)

    Article  Google Scholar 

  44. Das, B., Couceiro, M.S., Vargas, P.A.: MRoCS: a new multi-robot communication system based on passive action recognition. Robot. Auton. Syst. 82, 46–60 (2016)

    Article  Google Scholar 

  45. Vargas, P., Moioli, R., de Castro, L.N., Timmis, J., Neal, M., Von Zuben, F.J.: Artificial homeostatic system: a novel approach. In: Capcarrère, M.S., Freitas, A.A., Bentley, P.J., Johnson, C.G., Timmis, J. (eds.) ECAL 2005. LNCS (LNAI), vol. 3630, pp. 754–764. Springer, Heidelberg (2005). https://doi.org/10.1007/11553090_76

    Chapter  Google Scholar 

  46. Moioli, R.C., Vargas, P.A., Husbands, P.: A multiple hormone approach to the homeostatic control of conflicting behaviours in an autonomous mobile robot. In: 2009 IEEE Congress on Evolutionary Computation, pp. 47–54 (2009)

    Google Scholar 

  47. Vargas, P.A., Moioli, R.C., Von Zuben, F., Husbands, P.: Homeostasis and evolution together dealing with novelties and managing disruptions. Int. J. Intell. Comput. Cybern. 2(3), 435–454 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  48. Trianni, V., Tuci, E., Ampatzis, C., Dorigo, M.: Evolutionary swarm robotics: a theoretical and methodological itinerary from individual neuro-controllers to collective behaviours. In: The Horizons of Evolutionary Robotics, pp. 153–178 (2014)

    Google Scholar 

  49. Vargas, P.A., Di Paolo, E.A., Harvey, I., Husbands, P.: The Horizons of Evolutionary Robotics. MIT Press, Cambridge (2014)

    Book  Google Scholar 

  50. Moioli, R.C., Vargas, P.A., Von Zuben, F.J., Husbands, P.: Towards the evolution of an artificial homeostatic system. In: 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence), pp. 4023–4030 (2008)

    Google Scholar 

  51. Moioli, R.C., Vargas, P.A., Von Zuben, F.J., Husbands, P.: Evolving an artificial homeostatic system. In: Zaverucha, G., da Costa, A.L. (eds.) SBIA 2008. LNCS (LNAI), vol. 5249, pp. 278–288. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88190-2_33

    Chapter  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Siobhan Duncan, Gissell Estrada, Jakub Stocek and Heiko Gimperlein for the insightful discussions on the model.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hugo Sardinha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sardinha, H., Dragone, M., Vargas, P.A. (2020). Combining Lévy Walks and Flocking for Cooperative Surveillance Using Aerial Swarms. In: Bassiliades, N., Chalkiadakis, G., de Jonge, D. (eds) Multi-Agent Systems and Agreement Technologies. EUMAS AT 2020 2020. Lecture Notes in Computer Science(), vol 12520. Springer, Cham. https://doi.org/10.1007/978-3-030-66412-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-66412-1_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-66411-4

  • Online ISBN: 978-3-030-66412-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics