Skip to main content

Fine-Grained Task Distribution for Mobile Sensor Networks with Agent Cooperation Relationship

  • Conference paper
  • First Online:
Service-Oriented Computing (ICSOC 2020)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 12571))

Included in the following conference series:

Abstract

To enhance the comprehensive research on the distribution sensing tasks in Mobile Sensor Networks (MSNs) nowadays, we proposed Task Distribution algorithm based on Relationships of Agents (TDRA) in this paper. First, the score and feature factors of the mobile agents are considered comprehensively in the direct correlation model, and it constructs the correlation model by combining the direct and indirect correlation samples. Second, we introduce a Mobility Model based on the Exponential Distribution (MMED), and obtain the calculation method of probability parameter λ according to the analysis in this paper. At last, we integrate the constructed correlation model and mobility model; then, we apply to the algorithm of task distribution. By the experiments on the algorithms, it indicates that the proposed algorithm improves the performance of task distribution significantly, and offers a more accurate and reliable service.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ganti, R.K., Ye, F., Lei, H.: Mobile crowdsensing: current state and future challenges. IEEE Commun. Mag. 49(11), 32–39 (2011)

    Article  Google Scholar 

  2. Zhu, H., Zhang, Y., et al.: Exploring deep learning for efficient and reliable mobile sensing. IEEE Network 32(4), 6–7 (2018)

    Article  Google Scholar 

  3. Ma, H., Zhao, D., Yuan, P.: Opportunities in mobile crowd sensing. IEEE Commun. Mag. 52(8), 29–35 (2014)

    Article  Google Scholar 

  4. Jaimes, L.G., Laurens, I.J.V., Raij, A.: A location-based incentive algorithm for consecutive crowd sensing tasks. IEEE Latin Am. Trans. 14(2), 811–817 (2016)

    Article  Google Scholar 

  5. Mohan, P., Padmanabhan, V.N., Ramjee, R.: Nericell: rich monitoring of road and traffic conditions using mobile smartphones. In: Proceedings of the 6th International Conference on Embedded Networked Sensor Systems, pp. 323–336. ACM, Raleigh (2008)

    Google Scholar 

  6. Dutta, P., Aoki, P.M., Kumar, N., et al.: Common sense: participatory urban sensing using a network of handheld air quality monitors. In: Proceedings of the 7th ACM Conference on Embedded Networked Sensor Systems, pp. 349–350. ACM, New York (2009)

    Google Scholar 

  7. Hachem, S., Mallet, V., Ventura, R., et al.: Monitoring noise pollution using the urban civics middleware. In: 2015 IEEE First International Conference on Big Data Computing Service and Application, pp. 52–61. IEEE, USA (2015)

    Google Scholar 

  8. Villanueva, F.J., Villa, D., Santofimia, M.J., et al.: Crowdsensing smart city parking monitoring. In: 2015 IEEE 2nd World Forum on Internet of Things, pp. 751–756. IEEE, USA (2015)

    Google Scholar 

  9. Pryss, R., Reichert, M., Herrmann, J., et al.: Mobile crowdsensing in clinical and psychological trials–a case study,2015 IEEE 28th International Symposium on Computer-Based Medical Systems, pp. 23–24. IEEE, Brazil (2015)

    Google Scholar 

  10. Guo, B., Liu, Y., Wang, L., et al.: Task allocation in spatial crowdsourcing: current state and future directions. IEEE Internet Things J. 5(3), 1749–1764 (2018)

    Article  Google Scholar 

  11. Xiao, M., Wu, J., Huang, L., et al.: Multi-task assignment for crowdsensing in mobile social networks. In: 2015 IEEE Conference on Computer Communications, pp. 2227–2235. IEEE, Hong Kong (2015)

    Google Scholar 

  12. Xiao, M., Wu, J., Huang, L., et al.: Online task assignment for crowdsensing in predictable mobile social networks. IEEE Trans. Mob. Comput. 16(8), 2306–2320 (2017)

    Article  Google Scholar 

  13. Shi, C., Lakafosis, V., Ammar, M.H., et al.: Serendipity: enabling remote computing among intermittently connected mobile devices. In: Proceedings of the Thirteen ACM International Symposium on Mobile Ad Hoc Networking and Computing, pp. 145–154. ACM, USA (2012)

    Google Scholar 

  14. Zhang, M., Yang, P., et al.: Quality-aware sensing coverage in budget-constrained mobile crowdsensing networks. IEEE Trans. Veh. Technol. 69(9), 7698–7707 (2016)

    Article  Google Scholar 

  15. Yang, F., Lu, J.L., Zhu, Y., et al.: Heterogeneous task allocation in participatory sensing. In: 2015 IEEE Global Communications Conference (GLOBECOM), pp. 1–6. IEEE, Spain (2015)

    Google Scholar 

  16. Han, K., Zhang, C., Luo, J., et al.: Truthful scheduling mechanisms for powering mobile crowdsensing. IEEE Trans. Comput. 65(1), 294–307 (2016)

    Article  MathSciNet  Google Scholar 

  17. Wang, Z., Huang, D., Wu, H., et al.: QoS-constrained sensing task assignment for mobile crowd sensing. In: 2014 IEEE Global Communications Conference, Australia, pp. 311–326 (2014)

    Google Scholar 

  18. Messaoud, R.B., Ghamri-Doudane, Y.: QEMSS: a selection scheme for participatory sensing tasks. In: 2015 International Conference on Protocol Engineering and International Conference on New Technologies of Distributed Systems, pp. 1–6. IEEE, Dalian (2015)

    Google Scholar 

  19. Messaoud, R.B., Ghamri-Doudane, Y.: Fair QoI and energy-aware task allocation in participatory sensing. In: 2016 IEEE Wireless Communications and Networking Conference, India, pp. 1–6 (2016)

    Google Scholar 

  20. Kwak, J., Kim, J., Chong, S.: Proximity-aware location based collaborative sensing for energy-efficient mobile devices. IEEE Trans. Mob. Comput. 18(2), 417–430 (2019)

    Article  Google Scholar 

  21. Zhou, Z., Liao, H., Bo, G., et al.: Robust mobile crowd sensing: when deep learning meets edge computing. IEEE Network 32(4), 54–60 (2018)

    Article  Google Scholar 

  22. Wang, R., Jiang, Y., Li, Y., Lou, J.: A collaborative filtering recommendation algorithm based on multiple social trusts. J. Comput. Res. Dev. 53(6), 1389–1399 (2016)

    Google Scholar 

  23. Qiao, X.-Q., Yang, C., Li, X.-F., Chen, J.-L.: A trust calculating algorithm based on social networking service users’ context. Chin. J. Comput. 34(12), 2403–2413 (2011)

    Google Scholar 

  24. Hsu, W.J., Spyropoulos, T., Psounis, K., et al.: Modeling time-variant user mobility in wireless mobile networks. In: IEEE INFOCOM 2007-26th IEEE International Conference on Computer Communication, pp. 758–766. IEEE, China (2007)

    Google Scholar 

  25. Jeremie, L., Timur, F., Vania, C.: Evaluating mobility pattern space routing for DTNs. In: Processings of the IEEE Conference on Computing and Communication, pp. 1–10. IEEE, China (2006)

    Google Scholar 

  26. Cai, H., Eun, D.Y.: Crossing over the bounded domain: from exponential to power-law inter-meeting time in MANET. In: Proceedings of the 13th Annual ACM International Conference on Mobile Computing and Networking, pp. 159–170. ACM, Singapore (2007)

    Google Scholar 

  27. Gao, W., Li, Q., Zhao, B., et al.: Multicasting in delay tolerant networks: a social network perspective. In: Proceedings of the Tenth ACM International Symposium on Mobile Ad Hoc Networking and Computing, pp. 299–308. ACM, USA (2009)

    Google Scholar 

  28. Wu, J., Xiao, M., Huang, L.: Homing spread: community home-based multi-copy routing in mobile social networks. In: Proceedings IEEE INFOCOM, pp. 2319–2327. IEEE, Italy (2013)

    Google Scholar 

  29. Li, S., Li, S.-Q., Liu, B.: Improved collaborative filtering algorithm and its parallel implementation. J. Comput. Eng. Des. 39(12), 3853–3859 (2018)

    Google Scholar 

  30. Wang, H.-Y., Yang, W.-B., et al.: A service recommendation method based on trustworthy community. Chin. J. Comput. 37(2), 301–311 (2014)

    Google Scholar 

  31. Wang, Q., Wang, J.: Collaborative filtering recommendation algorithm combining trust mechanism with user preferences. J. Comput. Eng. Appl. 10, 261–265, 270 (2015)

    Google Scholar 

  32. Mikolajczy, K., Schmid, C.: A performance evaluation of local descriptors. IEEE Trans. Pattern Anal. Mach. Intell. 27(10), 1615–1630 (2005)

    Article  Google Scholar 

  33. http://realitycommons.media.mit.edu/index.html

  34. Sun, G.F., Wu, L., Liu, Q., Zhu, C., Chen, E.H.: Recommendations based on collaborative filtering by exploiting sequential behaviors. Ruan Jian Xue Bao/J. Softw. 24(11), 2721–2733 (2013). (in Chinese). http://www.jos.org.cn/1000-9825/4478.htm

  35. Wang, J., Wang, Y., Zhang, D., et al.: Fine-grained multitask allocation for participatory sensing with a shared budge. IEEE Internet Things J. 3(6), 1395–1405 (2016)

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported in part by the National Natural Science Foundation of China (No, 61070169), Pre Research Fund (No, 61403120402), Natural Science Research Project of Jiangsu Higher Education Institution (19KJB520061), the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shukui Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, Y., Tao, Y., Zhang, S., Zhang, L., Long, H. (2020). Fine-Grained Task Distribution for Mobile Sensor Networks with Agent Cooperation Relationship. In: Kafeza, E., Benatallah, B., Martinelli, F., Hacid, H., Bouguettaya, A., Motahari, H. (eds) Service-Oriented Computing. ICSOC 2020. Lecture Notes in Computer Science(), vol 12571. Springer, Cham. https://doi.org/10.1007/978-3-030-65310-1_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-65310-1_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-65309-5

  • Online ISBN: 978-3-030-65310-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics