Skip to main content

DLDDO: Deep Learning to Detect Dummy Operations

  • Conference paper
  • First Online:
Information Security Applications (WISA 2020)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 12583))

Included in the following conference series:

Abstract

Recently, research on deep learning based side-channel analysis (DLSCA) has received a lot of attention. Deep learning-based profiling methods similar to template attacks as well as non-profiling-based methods similar to differential power analysis have been proposed. DLSCA methods have been proposed for targets to which masking schemes or jitter-based hiding schemes are applied. However, most of them are methods for finding the secret key, except for methods for preprocessing, and there are no studies on the target to which the dummy-based hiding schemes or shuffling schemes are applied. In this paper, we propose a DLSCA for detecting dummy operations. In the previous study, dummy operations were detected using the method called BCDC, but there is a disadvantage in that it is impossible to detect dummy operations for commercial devices such as an IC card. We consider the detection of dummy operations as a multi-label classification problem and propose a deep learning method based on CNN to solve it. As a result, it is possible to successfully perform detection of dummy operations on an IC card, which was not possible in the previous study.

This work was supported as part of Military Crypto Research Center (UD170109ED) funded by Defense Acquisition Program Administration (DAPA) and Agency for Defense Development (ADD).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agrawal, D., Archambeault, B., Rao, J.R., Rohatgi, P.: The EM side—channel(s). In: Kaliski, B.S., Koç, K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 29–45. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36400-5_4

    Chapter  Google Scholar 

  2. Bishop, C.M., et al.: Neural Networks for Pattern Recognition. Oxford University Press, Oxford (1995)

    MATH  Google Scholar 

  3. Cagli, E., Dumas, C., Prouff, E.: Convolutional neural networks with data augmentation against jitter-based countermeasures. In: Fischer, W., Homma, N. (eds.) CHES 2017. LNCS, vol. 10529, pp. 45–68. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66787-4_3

    Chapter  Google Scholar 

  4. Diop, I., Liardet, P.Y., Linge, Y., Maurine, P.: Collision based attacks in practice. In: 2015 Euromicro Conference on Digital System Design, pp. 367–374. IEEE (2015)

    Google Scholar 

  5. Gilmore, R., Hanley, N., O’Neill, M.: Neural network based attack on a masked implementation of AES. In: 2015 IEEE International Symposium on Hardware Oriented Security and Trust (HOST), pp. 106–111. IEEE (2015)

    Google Scholar 

  6. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  7. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-1_25

    Chapter  Google Scholar 

  8. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)

    Article  Google Scholar 

  9. LeCun, Y., Bengio, Y., et al.: Convolutional networks for images, speech, and time series. Handb. Brain Theory Neural Netw. 3361(10), 1995 (1995)

    Google Scholar 

  10. Lee, J., Han, D.G.: Security analysis on dummy based side-channel countermeasures-case study: AES with dummy and shuffling. Appl. Soft Comput. 93, 106352 (2020). https://doi.org/10.1016/j.asoc.2020.106352

    Article  Google Scholar 

  11. Maghrebi, H., Portigliatti, T., Prouff, E.: Breaking cryptographic implementations using deep learning techniques. In: Carlet, C., Hasan, M.A., Saraswat, V. (eds.) SPACE 2016. LNCS, vol. 10076, pp. 3–26. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49445-6_1

    Chapter  Google Scholar 

  12. Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks. Springer, Boston (2007). https://doi.org/10.1007/978-0-387-38162-6

    Book  MATH  Google Scholar 

  13. Martinasek, Z., Hajny, J., Malina, L.: Optimization of power analysis using neural network. In: Francillon, A., Rohatgi, P. (eds.) CARDIS 2013. LNCS, vol. 8419, pp. 94–107. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08302-5_7

    Chapter  Google Scholar 

  14. Martinasek, Z., Zeman, V.: Innovative method of the power analysis. Radioengineering 22(2), 586–594 (2013)

    Google Scholar 

  15. Mo, H., Chen, B., Luo, W.: Fake faces identification via convolutional neural network. In: Proceedings of the 6th ACM Workshop on Information Hiding and Multimedia Security, pp. 43–47 (2018)

    Google Scholar 

  16. Pan, J., Liu, Y., Zhang, W.: Detection of dummy trajectories using convolutional neural networks. Secur. Commun. Netw. 2019 (2019)

    Google Scholar 

  17. Saravanan, P., Kalpana, P., Preethisri, V., Sneha, V.: Power analysis attack using neural networks with wavelet transform as pre-processor. In: 18th International Symposium on VLSI Design and Test, pp. 1–6. IEEE (2014)

    Google Scholar 

  18. Timon, B.: Non-profiled deep learning-based side-channel attacks with sensitivity analysis. IACR Trans. Cryptogr. Hardw. Embed. Syst. 219, 107–131 (2019)

    Article  Google Scholar 

  19. Yang, S., Zhou, Y., Liu, J., Chen, D.: Back propagation neural network based leakage characterization for practical security analysis of cryptographic implementations. In: Kim, H. (ed.) ICISC 2011. LNCS, vol. 7259, pp. 169–185. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31912-9_12

    Chapter  Google Scholar 

  20. Yang, Y., Zheng, L., Zhang, J., Cui, Q., Li, Z., Yu, P.S.: TI-CNN: convolutional neural networks for fake news detection. arXiv preprint arXiv:1806.00749 (2018)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong-Guk Han .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lee, J., Han, DG. (2020). DLDDO: Deep Learning to Detect Dummy Operations. In: You, I. (eds) Information Security Applications. WISA 2020. Lecture Notes in Computer Science(), vol 12583. Springer, Cham. https://doi.org/10.1007/978-3-030-65299-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-65299-9_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-65298-2

  • Online ISBN: 978-3-030-65299-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics