Skip to main content

Compact Implementation of CHAM Block Cipher on Low-End Microcontrollers

  • Conference paper
  • First Online:
Information Security Applications (WISA 2020)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 12583))

Included in the following conference series:

Abstract

In this paper, we presented an optimized implementation of CHAM block cipher on low-end microcontrollers. In order to accelerate the performance of the CHAM block cipher, the architecture of CHAM block cipher and the full specification of 8-bit AVR microcontrollers are efficiently utilized. First, the counter mode of operation for CHAM block cipher is optimized. A number of computations for round function are replaced to look-up table accesses. Second, multiple blocks of CHAM block cipher are computed in a parallel way for high throughput. With the parallel computation, we also presented the adopted encryption. This approach is efficient for long-length data handling. Third, the state-of-art engineering technique is fully utilized in terms of instruction level and register level. The partially unrolled 8-round based implementation is adopted, which avoids a number of word-wise rotation operations. With above optimization techniques, proposed CHAM implementations for counter mode of operation outperform the state-of-art implementations by 30.1%, 9.3%, and 10.0% for CHAM-64/128, CHAM-128/128, and CHAM-128/256, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    32-bit counter can be used for CHAM-64/128. In this case, pre-computed part is slightly reduced to half but still this leads to performance improvements over basic implementation.

References

  1. Koo, B., Roh, D., Kim, H., Jung, Y., Lee, D.-G., Kwon, D.: CHAM: a family of lightweight block ciphers for resource-constrained devices. In: Kim, H., Kim, D.-C. (eds.) ICISC 2017. LNCS, vol. 10779, pp. 3–25. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78556-1_1

    Chapter  Google Scholar 

  2. Roh, D., et al.: Revised version of block cipher CHAM. In: Seo, J.H. (ed.) ICISC 2019. LNCS, vol. 11975, pp. 1–19. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-40921-0_1

    Chapter  Google Scholar 

  3. Hong, D., Lee, J.-K., Kim, D.-C., Kwon, D., Ryu, K.H., Lee, D.-G.: LEA: a 128-bit block cipher for fast encryption on common processors. In: Kim, Y., Lee, H., Perrig, A. (eds.) WISA 2013. LNCS, vol. 8267, pp. 3–27. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-05149-9_1

    Chapter  Google Scholar 

  4. Seo, H., Liu, Z., Choi, J., Park, T., Kim, H.: Compact implementations of LEA block cipher for low-end microprocessors. In: Kim, H., Choi, D. (eds.) WISA 2015. LNCS, vol. 9503, pp. 28–40. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-31875-2_3

    Chapter  Google Scholar 

  5. Seo, H., Jeong, I., Lee, J., Kim, W.-H.: Compact implementations of ARX-based block ciphers on IoT processors. ACM Trans. Embed. Comput. Syst. (TECS) 17(3), 1–16 (2018)

    Google Scholar 

  6. Seo, H., An, K., Kwon, H.: Compact LEA and HIGHT implementations on 8-bit AVR and 16-bit MSP processors. In: Kang, B.B.H., Jang, J.S. (eds.) WISA 2018. LNCS, vol. 11402, pp. 253–265. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17982-3_20

    Chapter  Google Scholar 

  7. Hong, D., et al.: HIGHT: a new block cipher suitable for low-resource device. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol. 4249, pp. 46–59. Springer, Heidelberg (2006). https://doi.org/10.1007/11894063_4

    Chapter  Google Scholar 

  8. Eisenbarth, T., et al.: Compact implementation and performance evaluation of block ciphers in ATtiny devices. In: Mitrokotsa, A., Vaudenay, S. (eds.) AFRICACRYPT 2012. LNCS, vol. 7374, pp. 172–187. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31410-0_11

    Chapter  Google Scholar 

  9. Kim, B., Cho, J., Choi, B., Park, J., Seo, H.: Compact implementations of HIGHT block cipher on IoT platforms. Secur. Commun. Netw. 2019, 10 (2019)

    Google Scholar 

  10. Seo, H.: Memory-efficient implementation of ultra-lightweight block cipher algorithm CHAM on low-end 8-bit AVR processors. J. Korea Inst. Inf. Secur. Cryptol. 28, 545–550 (2018)

    Google Scholar 

  11. Osvik, D.A., Bos, J.W., Stefan, D., Canright, D.: Fast software AES encryption. In: Hong, S., Iwata, T. (eds.) FSE 2010. LNCS, vol. 6147, pp. 75–93. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13858-4_5

    Chapter  Google Scholar 

  12. Kim, K., Choi, S., Kwon, H., Liu, Z., Seo, H.: FACE–LIGHT: fast AES–CTR mode encryption for low-end microcontrollers. In: Seo, J.H. (ed.) ICISC 2019. LNCS, vol. 11975, pp. 102–114. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-40921-0_6

    Chapter  Google Scholar 

  13. Park, T., Seo, H., Lee, S., Kim, H.: Secure data encryption for cloud-based human care services. J. Sens. 2018, 10 (2018)

    Google Scholar 

  14. Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks, B., Wingers, L.: The Simon and Speck block ciphers on AVR 8-bit microcontrollers. In: Eisenbarth, T., Öztürk, E. (eds.) LightSec 2014. LNCS, vol. 8898, pp. 3–20. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16363-5_1

    Chapter  MATH  Google Scholar 

  15. Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks, B., Wingers, L.: Simon and speck: block ciphers for the internet of things. IACR Cryptol. ePrint Arch. 2015, 585 (2015)

    MATH  Google Scholar 

  16. Kim, K., Choi, S., Kwon, H., Kim, H., Liu, Z., Seo, H.: PAGE–practical AES-GCM encryption for low-end microcontrollers. Appl. Sci. 10(9), 3131 (2020)

    Article  Google Scholar 

Download references

Acknowledgement

This work was partly supported as part of Military Crypto Research Center (UD170109ED) funded by Defense Acquisition Program Administration (DAPA) and Agency for Defense Development (ADD) and this work was partly supported by Institute for Information & communications Technology Promotion (IITP) grant funded by the Korea government (MSIT) (No. 2018-0-00264, Research on Blockchain Security Technology for IoT Services) and this work was partly supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. NRF-2020R1F1A1048478).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hwajeong Seo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kwon, H. et al. (2020). Compact Implementation of CHAM Block Cipher on Low-End Microcontrollers. In: You, I. (eds) Information Security Applications. WISA 2020. Lecture Notes in Computer Science(), vol 12583. Springer, Cham. https://doi.org/10.1007/978-3-030-65299-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-65299-9_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-65298-2

  • Online ISBN: 978-3-030-65299-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics