Skip to main content

CT in Hybrid SPECT/CT and PET/CT

  • Chapter
  • First Online:
Basic Sciences of Nuclear Medicine
  • 2094 Accesses

Abstract

CT has been an integral part of hybrid imaging PET/CT and SPECT/CT for almost two decades and has not received the attention it deserves when compared to PET or SPECT. As the sensitivity and reconstruction of a PET scanner were improved over the years, the amount of radiation from the injected 18F-FDG dose to the patient was decreased and the radiation dose of CT often times superseded the radiation from the injected 18F-FDG dose. Today, many clinics may have a larger portion of radiation dose from CT than from 18F-FDG in a PET/CT scan if they use the vendor’s default CT protocol. Understanding CT can help lower the radiation exposure of CT, and can help improve localization and quantitation of functional PET or SPECT imaging. This chapter covers the essential knowledge of CT to excel the applications of PET/CT and SPECT/CT.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Lang TF, et al. Description of a prototype emission-transmission computed tomography imaging system. J Nucl Med. 1992;33(10):1881–7.

    CAS  PubMed  Google Scholar 

  2. Beyer T, et al. A combined PET/CT scanner for clinical oncology. J Nucl Med. 2000;41(8):1369–79.

    CAS  PubMed  Google Scholar 

  3. Kinahan PE, et al. Attenuation correction for a combined 3D PET/CT scanner. Med Phys. 1998;25(10):2046–53.

    Article  CAS  Google Scholar 

  4. Townsend DW, Beyer T. A combined PET/CT scanner: the path to true image fusion. Br J Radiol. 2002;75 Spec No:S24–30.

    Article  Google Scholar 

  5. Seo Y, Mari C, Hasegawa BH. Technological development and advances in single-photon emission computed tomography/computed tomography. Semin Nucl Med. 2008;38(3):177–98.

    Article  Google Scholar 

  6. Sawyer LJ, et al. Effective doses to patients from CT acquisitions on the GE Infinia Hawkeye: a comparison of calculation methods. Nucl Med Commun. 2008;29(2):144–9.

    Article  Google Scholar 

  7. Dvorak RA, Brown RK, Corbett JR. Interpretation of SPECT/CT myocardial perfusion images: common artifacts and quality control techniques. Radiographics. 2011;31(7):2041–57.

    Article  Google Scholar 

  8. Matesan M, et al. SPECT/CT bone scintigraphy to evaluate low back pain in young athletes: common and uncommon etiologies. J Orthop Surg Res. 2016;11(1):76.

    Article  CAS  Google Scholar 

  9. Van den Wyngaert T, et al. The EANM practice guidelines for bone scintigraphy. Eur J Nucl Med Mol Imaging. 2016;43(9):1723–38.

    Article  Google Scholar 

  10. Rumberger JA, Kaufman L. A Rosetta stone for coronary calcium risk stratification: agatston, volume, and mass scores in 11,490 individuals. AJR Am J Roentgenol. 2003;181(3):743–8.

    Article  Google Scholar 

  11. Neves PO, Andrade J, Moncao H. Coronary artery calcium score: current status. Radiol Bras. 2017;50(3):182–9.

    Article  Google Scholar 

  12. Osman MM, et al. Clinically significant inaccurate localization of lesions with PET/CT: frequency in 300 patients. J Nucl Med. 2003;44(2):240–3.

    PubMed  Google Scholar 

  13. Gould KL, et al. Frequent diagnostic errors in cardiac PET/CT due to misregistration of CT attenuation and emission PET images: a definitive analysis of causes, consequences, and corrections. J Nucl Med. 2007;48(7):1112–21.

    Article  Google Scholar 

  14. Pan T, et al. Attenuation correction of PET images with respiration-averaged CT images in PET/CT. J Nucl Med. 2005;46(9):1481–7.

    PubMed  Google Scholar 

  15. Chi P-CM, et al. Effects of respiration-averaged computed tomography on positron emission tomography/computed tomography quantification and its potential impact on gross tumor volume delineation. Int J Radiat Oncol Biol Phys. 2008;71(3):890–9.

    Article  Google Scholar 

  16. Carson RE, Daube-Witherspoon ME, Green MV. A method for postinjection PET transmission measurements with a rotating source. J Nucl Med. 1988;29(9):1558–67.

    CAS  PubMed  Google Scholar 

  17. Pan T, et al. Attenuation correction of PET cardiac data with low-dose average CT in PET/CT. Med Phys. 2006;33(10):3931–8.

    Article  Google Scholar 

  18. Cook RA, et al. Respiration-averaged CT for attenuation correction in canine cardiac PET/CT. J Nucl Med. 2007;48(5):811–8.

    Article  Google Scholar 

  19. Alessio AM, et al. Cine CT for attenuation correction in cardiac PET/CT. J Nucl Med. 2007;48(5):794–801.

    Article  Google Scholar 

  20. Keall PJ, et al. The management of respiratory motion in radiation oncology report of AAPM Task Group 76. Med Phys. 2006;33(10):3874–900.

    Article  Google Scholar 

  21. Low DA, et al. A method for the reconstruction of four-dimensional synchronized CT scans acquired during free breathing. Med Phys. 2003;30(6):1254–63.

    Article  Google Scholar 

  22. Pan T, et al. 4D-CT imaging of a volume influenced by respiratory motion on multi-slice CT. Med Phys. 2004;31(2):333–40.

    Article  Google Scholar 

  23. Keall PJ, et al. Acquiring 4D thoracic CT scans using a multislice helical method. Phys Med Biol. 2004;49(10):2053–67.

    Article  CAS  Google Scholar 

  24. Larke FJ, et al. Estimated radiation dose associated with low-dose chest CT of average-size participants in the National Lung Screening Trial. AJR Am J Roentgenol. 2011;197(5):1165–9.

    Article  Google Scholar 

  25. Gould KL, et al. Reducing radiation dose in rest-stress cardiac PET/CT by single poststress cine CT for attenuation correction: quantitative validation. J Nucl Med. 2008;49(5):738–45.

    Article  Google Scholar 

  26. Mok GSP, et al. Interpolated average CT for cardiac PET/CT attenuation correction. J Nucl Cardiol. 2016;23(5):1072–9.

    Article  Google Scholar 

  27. Riegel AC, et al. Dose calculation with respiration-averaged CT processed from cine CT without a respiratory surrogate. Med Phys. 2008;35(12):5738–47.

    Article  Google Scholar 

  28. Cai J, et al. Estimation of error in maximal intensity projection-based internal target volume of lung tumors: a simulation and comparison study using dynamic magnetic resonance imaging. Int J Radiat Oncol Biol Phys. 2007;69(3):895–902.

    Article  Google Scholar 

  29. Shirai K, et al. Phantom and clinical study of differences in cone beam computed tomographic registration when aligned to maximum and average intensity projection. Int J Radiat Oncol Biol Phys. 2014;88(1):189–94.

    Article  Google Scholar 

  30. Pan T, Sun X, Luo D. Improvement of the cine-CT based 4D-CT imaging. Med Phys. 2007;34(11):4499–503.

    Article  Google Scholar 

  31. Riegel AC, et al. Cine computed tomography without respiratory surrogate in planning stereotactic radiotherapy for non-small-cell lung cancer. Int J Radiat Oncol Biol Phys. 2009;73(2):433–41.

    Article  Google Scholar 

  32. Underberg RW, et al. Use of maximum intensity projections (MIP) for target volume generation in 4DCT scans for lung cancer. Int J Radiat Oncol Biol Phys. 2005;63(1):253–60.

    Article  Google Scholar 

  33. Bradley JD, et al. Comparison of helical, maximum intensity projection (MIP), and averaged intensity (AI) 4D CT imaging for stereotactic body radiation therapy (SBRT) planning in lung cancer. Radiother Oncol. 2006;81(3):264–8.

    Article  Google Scholar 

  34. Riegel AC, et al. Cine CT without a respiratory surrogate in planning of stereotactic radiotherapy for non-small cell lung cancer. Int J Radiat Oncol Biol Phys. 2009;73(2):433–41.

    Article  Google Scholar 

  35. Biehl KJ, et al. 18F-FDG PET definition of gross tumor volume for radiotherapy of non-small cell lung cancer: is a single standardized uptake value threshold approach appropriate? J Nucl Med. 2006;47(11):1808–12.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tinsu Pan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pan, T. (2021). CT in Hybrid SPECT/CT and PET/CT. In: Khalil, M.M. (eds) Basic Sciences of Nuclear Medicine. Springer, Cham. https://doi.org/10.1007/978-3-030-65245-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-65245-6_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-65244-9

  • Online ISBN: 978-3-030-65245-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics