Skip to main content

Positron Emission Tomography (PET): Characteristics and Performance

  • Chapter
  • First Online:
Basic Sciences of Nuclear Medicine
  • 2089 Accesses

Abstract

PET is one of the standard diagnostic imaging modality in clinical arena. It enjoys several features including high sensitivity and capabilities of tracer quantitation. The stability, reliability, and reproducibility of PET scanners should be maintained at all times to ensure consistency of the scanning examinations and accuracy of the diagnostic process. Several measures and performance metrics are in place to keep the PET/CT and PET/MR scanners in a state of acceptable performance. There are also specific tests to be carried out at the commissioning phase, acceptance as well as periodical checks to achieve these goals. This chapter was therefore designed to highlight important aspects of PET system characteristics and associated performance parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Humm JL, Rosenfeld A, Del Guerra A. From PET detectors to PET scanners. Eur J Nucl Med Mol Imaging. 2003;30(11):1574–97.

    Article  PubMed  Google Scholar 

  2. Wong WH. PET camera performance design evaluation for BGO and BaF2 scintillators (non-time-of-flight). J Nucl Med. 1988;29(3):338–47.

    CAS  PubMed  Google Scholar 

  3. Schmitz RE, Kinahan PE, Harrison RL, Stearns CW, Lewellen TK. Simulation of count rate performance for a PET scanner with different degrees of partial collimation. In: IEEE nuclear science symposium conference record, October 23–29, 2005. p. 2506–9.

    Google Scholar 

  4. Schmand M, et al. Performance results of a new DOI detector block for a high resolution PET LSO research tomograph HRRT. IEEE Trans Nucl Sci. 1998;45:3000–6.

    Article  Google Scholar 

  5. Townsend DW. Positron emission tomography/computed tomography. Semin Nucl Med. 2008;38(3):152–66.

    Article  PubMed  Google Scholar 

  6. Townsend DW. Multimodality imaging of structure and function. Phys Med Biol. 2008;53(4):R1–R39.

    Article  CAS  PubMed  Google Scholar 

  7. Vandenberghe S, Moskal P, Karp JS. State of the art in total body PET. EJNMMI Phys. 2020;7(1):35.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Badawi RD, Shi H, Hu P, Chen S, Xu T, Price PM, et al. First human imaging studies with the EXPLORER total-body PET scanner. J Nucl Med. 2019;60(3):299–303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Cherry SR, Jones T, Karp JS, Qi J, Moses WW, Badawi RD. Total-body PET: maximizing sensitivity to create new opportunities for clinical research and patient care. J Nucl Med. 2018;59(1):3–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Cherry SR, Badawi RD, Karp JS, Moses WW, Price P, Jones T. Total-body imaging: transforming the role of positron emission tomography. Sci Transl Med. 2017;9(381):eaaf6169.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Zhang X, Cherry SR, Xie Z, Shi H, Badawi RD, Qi J. Subsecond total-body imaging using ultrasensitive positron emission tomography. Proc Natl Acad Sci U S A. 2020;117(5):2265–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Moses WW, Derenzo SE. Empirical observation of resolution degra-dation in positron emission tomographs utilizing block detectors. J Nucl Med. 1993;34:101P.

    Google Scholar 

  13. Daube-Witherspoon ME, Karp JS, Casey ME, DiFilippo FP, Hines H, Muehllehner G, et al. PET performance measurements using the NEMA NU 2-2001 standard. J Nucl Med. 2002;43(10):1398–409.

    PubMed  Google Scholar 

  14. Rahmim A, Zaidi H. PET versus SPECT: strengths, limitations and challenges. Nucl Med Commun. 2008;29(3):193–207.

    Article  PubMed  Google Scholar 

  15. Kolb A, Sauter AW, Eriksson L, Vandenbrouke A, Liu CC, Levin C, et al. Shine-through in PET/MR imaging: effects of the magnetic field on positron range and subsequent image artifacts. J Nucl Med. 2015;56(6):951–4.

    Article  PubMed  Google Scholar 

  16. Caribe P, Koole M, D'Asseler Y, Deller TW, Van Laere K, Vandenberghe S. NEMA NU 2-2007 performance characteristics of GE Signa integrated PET/MR for different PET isotopes. EJNMMI Phys. 2019;6(1):11.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Stickel JR, Cherry SR. High-resolution PET detector design: modelling components of intrinsic spatial resolution. Phys Med Biol. 2005;50(2):179–95.

    Article  PubMed  Google Scholar 

  18. Stickel JR, Qi J, Cherry SR. Fabrication and characterization of a 0.5-mm lutetium oxyorthosilicate detector array for high-resolution PET applications. J Nucl Med. 2007;48(1):115–21.

    PubMed  Google Scholar 

  19. Palmer MR, Zhu X, Parker JA. Modeling and simulation of positron range effects for high resolution PET imaging. IEEE Trans Nucl Sci. 2005;52:1391.

    Article  Google Scholar 

  20. Ruangma A, Bai B, Lewis JS, Sun X, Welch MJ, Leahy R, et al. Three-dimensional maximum a posteriori (MAP) imaging with radiopharmaceuticals labeled with three Cu radionuclides. Nucl Med Biol. 2006;33(2):217–26.

    Article  CAS  PubMed  Google Scholar 

  21. Bertolli O, Eleftheriou A, Cecchetti M, Camarlinghi N, Belcari N, Tsoumpas C. PET iterative reconstruction incorporating an efficient positron range correction method. Phys Med. 2016;32(2):323–30.

    Article  PubMed  Google Scholar 

  22. Derenzo SE. Mathematical removal of positron range blurring in high resolution tomography. IEEE Trans Nucl Sci. 1986;33(1):565–9.

    Article  Google Scholar 

  23. Fu L, Qi J. A residual correction method for high-resolution PET reconstruction with application to on-the-fly Monte Carlo based model of positron range. Med Phys. 2010;37(2):704–13.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Levin CS, Zaidi H. Current trends in preclinical PET system design. PET Clin. 2007;2(2):125–60.

    Article  PubMed  Google Scholar 

  25. Yang Y, Wu Y, Qi J, St James S, Du H, Dokhale PA, et al. A prototype PET scanner with DOI-encoding detectors. J Nucl Med. 2008;49(7):1132–40.

    Article  PubMed  Google Scholar 

  26. Wang Y, Seidel J, Tsui BM, Vaquero JJ, Pomper MG. Performance evaluation of the GE healthcare eXplore VISTA dual-ring small-animal PET scanner. J Nucl Med. 2006;47(11):1891–900.

    PubMed  Google Scholar 

  27. Mohammadi I, Castro IFC, Correia PMM, Silva ALM, Veloso JFCA. Minimization of parallax error in positron emission tomography using depth of interaction capable detectors: methods and apparatus. Biomed Phys Eng Exp. 2019;5(6):062001.

    Article  Google Scholar 

  28. Schmall JP, Karp JS, Werner M, Surti S. Parallax error in long-axial field-of-view PET scanners-a simulation study. Phys Med Biol. 2016;61(14):5443–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Karp JS, Viswanath V, Geagan MJ, Muehllehner G, Pantel AR, Parma MJ, et al. PennPET explorer: design and preliminary performance of a whole-body imager. J Nucl Med. 2020;61(1):136–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Fahey FH. Data acquisition in PET imaging. J Nucl Med Technol. 2002;30(2):39–49.

    PubMed  Google Scholar 

  31. Cherry S, Sorenson J, Phelps M. Physics in nuclear medicine. 4th ed. Philadelphia: Saunders; 2012.

    Google Scholar 

  32. Qi J, Leahy RM. Iterative reconstruction techniques in emission computed tomography. Phys Med Biol. 2006;51(15):R541–78.

    Article  PubMed  Google Scholar 

  33. Links JM, Leal JP, Mueller-Gaertner HW, Wagner HN Jr. Improved positron emission tomography quantification by Fourier-based restoration filtering. Eur J Nucl Med. 1992;19(11):925–32.

    Article  CAS  PubMed  Google Scholar 

  34. Panin VY, Kehren F, Michel C, Casey M. Fully 3-D PET reconstruction with system matrix derived from point source measurements. IEEE Trans Med Imaging. 2006;25(7):907–21.

    Article  PubMed  Google Scholar 

  35. Varrone A, Sjoholm N, Eriksson L, Gulyas B, Halldin C, Farde L. Advancement in PET quantification using 3D-OP-OSEM point spread function reconstruction with the HRRT. Eur J Nucl Med Mol Imaging. 2009;36(10):1639–50.

    Article  PubMed  Google Scholar 

  36. Sureau FC, Reader AJ, Comtat C, Leroy C, Ribeiro MJ, Buvat I, et al. Impact of image-space resolution modeling for studies with the high-resolution research tomograph. J Nucl Med. 2008;49(6):1000–8.

    Article  PubMed  Google Scholar 

  37. Rahmim A, Tang J, Lodge MA, Lashkari S, Ay MR, Lautamaki R, et al. Analytic system matrix resolution modeling in PET: an application to Rb-82 cardiac imaging. Phys Med Biol. 2008;53(21):5947–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Aston JA, Cunningham VJ, Asselin MC, Hammers A, Evans AC, Gunn RN. Positron emission tomography partial volume correction: estimation and algorithms. J Cereb Blood Flow Metab. 2002;22(8):1019–34.

    Article  PubMed  Google Scholar 

  39. Soret M, Bacharach SL, Buvat I. Partial-volume effect in PET tumor imaging. J Nucl Med. 2007;48(6):932–45.

    Article  PubMed  Google Scholar 

  40. Boellaard R, Krak NC, Hoekstra OS, Lammertsma AA. Effects of noise, image resolution, and ROI definition on the accuracy of standard uptake values: a simulation study. J Nucl Med. 2004;45(9):1519–27.

    PubMed  Google Scholar 

  41. Mourik JE, Lubberink M, van Velden FH, Kloet RW, van Berckel BN, Lammertsma AA, et al. In vivo validation of reconstruction-based resolution recovery for human brain studies. J Cereb Blood Flow Metab. 2010;30(2):381–9.

    Article  PubMed  Google Scholar 

  42. Lewellen T, Karp J. PET systems. In: Wernick M, Aarsvold J, editors. Emission tomography: the fundamentals of PET and SPECT. San Diego: Elsevier Academic; 2004.

    Google Scholar 

  43. Strother SC, Casey ME, Hoffman EJ. Measuring PET scanner sensitivity: relating count rates to image signal to noise ratios using noise equivalent counts. IEEE Trans Nucl Sci. 1990;37:783–8.

    Article  Google Scholar 

  44. Vandendriessche D, Uribe J, Bertin H, De Geeter F. Performance characteristics of silicon photomultiplier based 15-cm AFOV TOF PET/CT. EJNMMI Phys. 2019;6(1):8.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Badawi RD, Dahlbom M. NEC: some coincidences are more equivalent than others. J Nucl Med. 2005;46(11):1767–8.

    PubMed  Google Scholar 

  46. Lartizien C, Comtat C, Kinahan PE, Ferreira N, Bendriem B, Trebossen R. Optimization of injected dose based on noise equivalent count rates for 2- and 3-dimensional whole-body PET. J Nucl Med. 2002;43(9):1268–78.

    PubMed  Google Scholar 

  47. National Electrical Manufacturers Association. Performance measurements of positron emission tomographs (PET). NEMA Standards Publication NU 2-2012. Rosslyn: National Electrical Manufacturers Association; 2012.

    Google Scholar 

  48. National Electrical Manufacturers Association. Performance measurements of positron emission tomographs (PET). NEMA Standards Publication NU 2-2018. Rosslyn: National Electrical Manufacturers Association; 2018.

    Google Scholar 

  49. Pan T, Einstein SA, Kappadath SC, Grogg KS, Lois Gomez C, Alessio AM, et al. Performance evaluation of the 5-ring GE discovery MI PET/CT system using the national electrical manufacturers association NU 2-2012 standard. Med Phys. 2019;46(7):3025–33.

    Article  PubMed  Google Scholar 

  50. Moses WW. Advantages of improved timing accuracy in PET cameras using LSO scintillator. In: IEEE nuclear science symposium conference record, vol. 3, 2002. p. 1670–5.

    Google Scholar 

  51. Conti M. Focus on time-of-flight PET: the benefits of improved time resolution. Eur J Nucl Med Mol Imaging. 2011;38(6):1147–57.

    Article  PubMed  Google Scholar 

  52. Budinger TF. Time-of-flight positron emission tomography: status relative to conventional PET. J Nucl Med. 1983;24(1):73–8.

    CAS  PubMed  Google Scholar 

  53. Moses WW. Time of flight in PET revisited. IEEE Trans Nucl Sci. 2003;50:1325–30.

    Article  Google Scholar 

  54. Conti M. State of the art and challenges of time-of-flight PET. Phys Med. 2009;25(1):1–11.

    Article  PubMed  Google Scholar 

  55. Kyba CM, Wiener RI, Newcomer FM, Perkins AE, et al. Evaluation of local PMT triggering electronics for a TOF PET scanner. In: Sellin P, editor. IEEE nuclear science symposium and medical imaging conf record (Dresden, Germany), 2008.

    Google Scholar 

  56. Daube-Witherspoon ME, Surti S, Perkins A, Kyba CC, Wiener R, Werner ME, et al. The imaging performance of a LaBr3-based PET scanner. Phys Med Biol. 2010;55(1):45–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Surti S, Kuhn A, Werner ME, Perkins AE, Kolthammer J, Karp JS. Performance of Philips Gemini TF PET/CT scanner with special consideration for its time-of-flight imaging capabilities. J Nucl Med. 2007;48(3):471–80.

    PubMed  Google Scholar 

  58. Ollinger JM. Detector efficiency and compton scatter in fully 3D PET. IEEE Trans Nucl Sci. 1995;42:1168–73.

    Article  Google Scholar 

  59. Badawi RD, Marsden PK. Self normalization of emission data in 3D PET. IEEE Trans Nucl Sci. 1999;46:709.

    Article  Google Scholar 

  60. Ishikawa A, Kitamura K, Mizuta T, Tanaka K, Amano M. Self normalization for continuous 3D whole body emission data in 3D PET. IEEE Trans Nucl Sci. 2004;6:3634–7.

    Google Scholar 

  61. Hoffman EJ, Guerrero TM, Germano G, Digby WM, Dahlbom M. PET system calibrations and corrections for quantitative and spatially accurate images. IEEE Trans Nucl Sci. 1989;36:1108–12.

    Article  Google Scholar 

  62. Defrise M, Townsend DW, Bailey D, Geissbuhler A, Michel C, Jones T. A normalization technique for 3D PET data. Phys Med Biol. 1991;36(7):939–52.

    Article  CAS  PubMed  Google Scholar 

  63. Casey ME, Gadagkar H, Newport D. A component based method for normalization in volume PET. In: Proceedings of the 3rd international meeting fully three dimensional image reconstruction in radiology and nuclear medicine. Aix les Bains, France, 1995. p. 67–71.

    Google Scholar 

  64. Kinahan PE, Townsend DW, Bailey DL, Sashin D, et al. Efficiency normalization technique for 3D PET data. In: Proceeding of the IEEE nuclear science symposium and medical imaging conference recording, vol. 2, 1995. p. 21–8.

    Google Scholar 

  65. Badawi RD, Marsden PK. Developments in component-based normalization for 3D PET. Phys Med Biol. 1999;44(2):571–94.

    Article  CAS  PubMed  Google Scholar 

  66. Badawi RD, Ferreira NC, Kohlmyer SG, Dahlbom M, Marsden PK, Lewellen TK. A comparison of normalization effects on three whole-body cylindrical 3D PET systems. Phys Med Biol. 2000;45(11):3253–66.

    Article  CAS  PubMed  Google Scholar 

  67. Germano G, Hoffman EJ. A study of data loss and mispositioning due to pileup in 2D detectors in PET. IEEE Trans Nucl Sci. 1990;37(2):671–5.

    Article  Google Scholar 

  68. Bailey DL, Meikle SR, Jones T. Effective sensitivity in 3D PET: the impact of detector dead time on 3D system performance. IEEE Trans Nucl Sci. 1997;44:1180–5.

    Article  CAS  Google Scholar 

  69. Spinks TJ, Bloomfield PM. A comparison of count rate performance for 15O water blood flow studies in the CTI HR + and Accel tomographs in 3D model. In: Nuclear science symposium conference record, vol 3, 2002. p. 1457–60.

    Google Scholar 

  70. Moisan C, Rogers JG, Douglas JL. A count rate model for PET and its application to an LSO HR plus scanner. IEEE Trans Nucl Sci. 1997;44:1219–24.

    Article  CAS  Google Scholar 

  71. Guerra L, Ponti E, Morzenti S, Spadavecchia C, Crivellaro C. Respiratory motion management in PET/CT: applications and clinical usefulness. Curr Radiopharm. 2017;10(2):85–92.

    Article  CAS  PubMed  Google Scholar 

  72. Blankespoor SC, Xu X, Kaiki B, Tang HR, Cann CE, et al. Attenuation correction of SPECT using x ray CT on an emission transmission CT system: myocardial perfusion assessment. IEEE Trans Nucl Sci. 1996;43:2263–74.

    Article  Google Scholar 

  73. Kinahan PE, Townsend DW, Beyer T, Sashin D. Attenuation correction for a combined 3D PET/CT scanner. Med Phys. 1998;25(10):2046–53.

    Article  CAS  PubMed  Google Scholar 

  74. Burger C, Goerres G, Schoenes S, Buck A, Lonn AH, Von Schulthess GK. PET attenuation coefficients from CT images: experimental evaluation of the transformation of CT into PET 511-keV attenuation coefficients. Eur J Nucl Med Mol Imaging. 2002;29(7):922–7.

    Article  CAS  PubMed  Google Scholar 

  75. Benard F, Smith RJ, Hustinx R, Karp JS, Alavi A. Clinical evaluation of processing techniques for attenuation correction with 137Cs in whole-body PET imaging. J Nucl Med. 1999;40(8):1257–63.

    CAS  PubMed  Google Scholar 

  76. Bai C, Shao L, Da Silva AJ, et al. A generalized model for the conversion from CT numbers to linear attenuation coefficients. IEEE Trans Nucl Sci. 2003;50:1510–5.

    Article  Google Scholar 

  77. Seo Y, Mari C, Hasegawa BH. Technological development and advances in single-photon emission computed tomography/computed tomography. Semin Nucl Med. 2008;38(3):177–98.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Thompson CJ. The problem of scatter correction in positron volume imaging. IEEE Trans Med Imaging. 1993;MI-12:124–32.

    Article  Google Scholar 

  79. Lercher MJ, Wienhard K. Scatter correction in 3D PET. IEEE Trans Med Imaging. 1994;13:649–57.

    Article  CAS  PubMed  Google Scholar 

  80. Adam LE, Bellemann ME, Brix G, Lorenz WJ. Monte Carlo-based analysis of PET scatter components. J Nucl Med. 1996;37(12):2024–9.

    CAS  PubMed  Google Scholar 

  81. Zaidi H, Koral KF. Scatter modelling and compensation in emission tomography. Eur J Nucl Med Mol Imaging. 2004;31(5):761–82.

    Article  PubMed  Google Scholar 

  82. Grootoonk S, Spinks TJ, Sashin D, Spyrou NM, Jones T. Correction for scatter in 3D brain PET using a dual energy window method. Phys Med Biol. 1996;41(12):2757–74.

    Article  CAS  PubMed  Google Scholar 

  83. Bailey DL. Quantitative procedures in 3D PET. In: Bendriem B, Townsend DW, editors. The theory and practice of 3D PET. Dordrecht: Kluwer Academic; 1998. p. 55–109.

    Chapter  Google Scholar 

  84. Bentourkia M, Lecomte R. Energy dependence of nonstationary scatter subtraction restoration in high resolution PET. IEEE Trans Med Imaging. 1999;18:66–73.

    Article  CAS  PubMed  Google Scholar 

  85. Bailey DL, Meikle SR. A convolution-subtraction scatter correction method for 3D PET. Phys Med Biol. 1994;39(3):411–24.

    Article  CAS  PubMed  Google Scholar 

  86. McKee B, Gurvey AT, Harvey PJ, Howse DC. A deconvolution scatter correction for a 3D PET system. IEEE Trans Med Imaging. 1992;11(4):560–9.

    Article  CAS  PubMed  Google Scholar 

  87. Ollinger JM. Model-based scatter correction for fully 3D PET. Phys Med Biol. 1996;41(1):153–76.

    Article  CAS  PubMed  Google Scholar 

  88. Watson CC, Casey ME, Michel C, Bendriem B. Advances in scatter correction for 3D PET/CT. In: IEEE nuclear science symposium conference record, vol. 5, 2004. p. 3008–12.

    Google Scholar 

  89. Watson C. Extension of single scatter simulation to scatter correction of time of flight PET. IEEE Trans Nucl Sci. 2007;54(5):1679–86.

    Article  Google Scholar 

  90. Shiri I, Arabi H, Geramifar P, Hajianfar G, Ghafarian P, Rahmim A, et al. Deep-JASC: joint attenuation and scatter correction in whole-body (18)F-FDG PET using a deep residual network. Eur J Nucl Med Mol Imaging. 2020;47:2533.

    Article  PubMed  Google Scholar 

  91. Yang J, Park D, Gullberg GT, Seo Y. Joint correction of attenuation and scatter in image space using deep convolutional neural networks for dedicated brain (18)F-FDG PET. Phys Med Biol. 2019;64(7):075019.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Khalil, M.M. (2021). Positron Emission Tomography (PET): Characteristics and Performance. In: Khalil, M.M. (eds) Basic Sciences of Nuclear Medicine. Springer, Cham. https://doi.org/10.1007/978-3-030-65245-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-65245-6_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-65244-9

  • Online ISBN: 978-3-030-65245-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics