Advertisement

Interference Management and Control in Cognitive Radio Networks Using Stochastic Geometry

Chapter
  • 11 Downloads

Abstract

This chapter focusses on the recent use of the tool of stochastic geometry for achieving interference management and control in the cognitive radio networks. The advantages of the use of the tool of stochastic geometry over the traditional grid model are highlighted. Also, the general methods of modelling interference with the tool of stochastic geometry are presented, while the common approaches when characterising users’ distributions are discussed. Furthermore, the strengths and limitations of each of the approaches discussed are pointed out. Then, analyses that demonstrate how this tool can be effective when used in modelling interference in the cognitive radio networks are presented.

Keywords

Cognitive radio networks Network interference Interference management Hexagonal grid model Stochastic geometry 

References

  1. 1.
    B.S. Awoyemi, B.T. Maharaj, A.S. Alfa, Resource allocation in heterogeneous buffered cognitive radio networks. Wirel. Commun. Mob. Comput. 2017(7385627), 1–12 (2017)CrossRefGoogle Scholar
  2. 2.
    J. Xu, J. Zhang, J. G. Andrews, On the accuracy of the Wyner model in cellular networks. IEEE Trans. Wirel. Commun. 10(9), 3098–3109 (2011)CrossRefGoogle Scholar
  3. 3.
    H.S. Dhillon, R.K. Ganti, F. Baccelli, J.G. Andrews, Modeling and analysis of K-Tier downlink heterogeneous cellular networks. IEEE J. Select. Areas Commun. 30(3), 550–560 (2012)CrossRefGoogle Scholar
  4. 4.
    C.H. Lee, C.Y. Shih, Y.S. Chen, Stochastic geometry based models for modeling cellular networks in urban areas. Wirel. Netw. 19, 1063–1072 (2013)CrossRefGoogle Scholar
  5. 5.
    T.V. Nguyen, F. Baccelli, A stochastic geometry model for cognitive radio networks. Comput. J. 55(5), 534–552 (2012)CrossRefGoogle Scholar
  6. 6.
    J.G. Andrews, F. Baccelli, R.K. Ganti, A tractable approach to coverage and rate in cellular networks. IEEE Trans. Commun. 59(11), 3122–3134 (2011)CrossRefGoogle Scholar
  7. 7.
    K.S. Gilhousen, I.M. Jacobs, R. Padovani, A.J. Viterbi, L.A. Weaver, C.E. Wheatley, On the capacity of a cellular CDMA system. IEEE Trans. Veh. Technol. 40(2), 303–312 (1991)CrossRefGoogle Scholar
  8. 8.
    H. ElSawy, E. Hossain, M. Haenggi, Stochastic geometry for modeling, analysis, and design of multi-tier and cognitive cellular wireless networks: a survey. IEEE Commun. Surv. Tutorials 15(3), 996–1019 (2013)CrossRefGoogle Scholar
  9. 9.
    D. Moltchanov, Distance distributions in random networks. Ad Hoc Netw. 10(6), 1146–1166 (2012). http://www.sciencedirect.com/science/article/pii/S1570870512000224 CrossRefGoogle Scholar
  10. 10.
    P. Cardieri, Modeling interference in wireless ad hoc networks. IEEE Commun. Surv. Tutorials 12(4), 551–572 (2010)CrossRefGoogle Scholar
  11. 11.
    X. Song, C. Yin, D. Liu, R. Zhang, Spatial throughput characterization in cognitive radio networks with threshold-based opportunistic spectrum access. IEEE J. Select. Areas Commun. 32(11), 2190–2204 (2014)CrossRefGoogle Scholar
  12. 12.
    C. Lee, M. Haenggi, Interference and outage in Poisson cognitive networks. IEEE Trans. Wirel. Commun. 11(4), 1392–1401 (2012)CrossRefGoogle Scholar
  13. 13.
    U. Tefek, T.J. Lim, Interference management through exclusion zones in two-tier cognitive networks. IEEE Trans. Wirel. Commun. 15(3), 2292–2302 (2016)CrossRefGoogle Scholar
  14. 14.
    S. Kusaladharma, C. Tellambura, Secondary user interference characterization for spatially random underlay networks with massive MIMO and power control. IEEE Trans. Veh. Technol. 66(9), 7897–7912 (2017)CrossRefGoogle Scholar
  15. 15.
    Z. Yazdanshenasan, H.S. Dhillon, M. Afshang, P.H.J. Chong, Poisson hole process: theory and applications to wireless networks. IEEE Trans. Wirel. Commun. 15(11), 7531–7546 (2016)CrossRefGoogle Scholar
  16. 16.
    S.D. Okegbile, B.T. Maharaj, A.S. Alfa, Interference characterization in underlay cognitive networks with intra-network and inter-network dependence. IEEE Trans. Mob. Comput., 1–1 (2020)Google Scholar

Copyright information

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022

Authors and Affiliations

  1. 1.University of PretoriaPretoriaSouth Africa

Personalised recommendations