Advertisement

Cooperative Diversity for Resource Optimisation in Cognitive Radio Networks

Chapter
  • 11 Downloads

Abstract

The problem of interference is arguably the biggest problem that may hinder or limit cognitive radio networks’ realisation. Recently, the concept of cooperative diversity is being introduced and employed to help mitigate the effects of interference, and in providing improved resource allocation solutions for end-to-end communication in the cognitive radio network. The use and significance of cooperative diversity in the resource allocation optimisation for cognitive radio networks are discussed in this chapter. Some important results are presented to show the marked improvement in resource optimisation for the cognitive radio network when cooperation is incorporated in the network design.

Keywords

Cognitive radio networks Network interference Cooperative diversity Relaying Classical optimisation Heuristics 

References

  1. 1.
    L.E. Doyle, Essentials of Cognitive Radio. The Cambridge Wireless Essentials Series (Cambridge University Press, New York, 2009)CrossRefGoogle Scholar
  2. 2.
    K. Pretz, Overcoming spectrum scarcity – cognitive radio networks might be one answer (2012). http://theinstitute.ieee.org/technology-focus/technology-topic/overcoming-spectrum-scarcity
  3. 3.
    M. Ge, S. Wang, On the resource allocation for multi-relay cognitive radio systems, in Proceedings of the IEEE ICC (2014), pp. 1591–1595Google Scholar
  4. 4.
    J. Li, T. Luo, G. Yue, Resource allocation scheme based on weighted power control in cognitive radio systems, in Proceedings of the ICCCAS, vol. 1 (2013), pp. 178–182Google Scholar
  5. 5.
    B.S. Awoyemi, B.T. Maharaj, Mitigating interference in the resource optimisation for heterogeneous cognitive radio networks, in Proceedings of the IEEE 2nd Wireless Africa Conference (WAC) (2019), pp. 1–6Google Scholar
  6. 6.
    J. Oh, W. Choi, A hybrid cognitive radio system: a combination of underlay and overlay approaches, in Proceedings of the IEEE VTC (Fall) (2010), pp. 1–5Google Scholar
  7. 7.
    N. Hao, S.-J. Yoo, Interference avoidance throughput optimization in cognitive radio ad hoc networks. EURASIP J. Wirel. Commun. Netw. 2012(1) (2012). http://dx.doi.org/10.1186/1687-1499-2012-295
  8. 8.
    Z. Chen, C.-X. Wang, X. Hong, J. Thompson, S. A. Vorobyov, F. Zhao, X. Ge, Interference mitigation for cognitive radio {MIMO} systems based on practical precoding. Phys. Commun. 9, 308–315 (2013). http://www.sciencedirect.com/science/article/pii/S1874490712000390 CrossRefGoogle Scholar
  9. 9.
    D. Hu, S. Mao, On co-channel and adjacent channel interference mitigation in cognitive radio networks. Ad Hoc Netw. 11(5), 1629–1640 (2013). http://www.sciencedirect.com/science/article/pii/S1570870513000292 CrossRefGoogle Scholar
  10. 10.
    B.S. Awoyemi, B.T.J. Maharaj, A.S. Alfa, Solving resource allocation problems in cognitive radio networks: a survey. EURASIP J. Wirel. Commun. Netw. 2016(1), 176 (2016). https://doi.org/10.1186/s13638-016-0673-6
  11. 11.
    B.S. Awoyemi, B.T. Maharaj, A.S. Alfa, Resource allocation for heterogeneous cognitive radio networks, in Proceedings of the IEEE WCNC (2015), pp. 1759–1763Google Scholar
  12. 12.
    B.S. Awoyemi, B.T. Maharaj, A.S. Alfa, QoS provisioning in heterogeneous cognitive radio networks through dynamic resource allocation, in Proceedings of the IEEE AFRICON (2015), pp. 1–6Google Scholar
  13. 13.
    B. Awoyemi, T. Walingo, F. Takawira, Predictive relay-selection cooperative diversity in land mobile satellite systems. Int. J. Satellite Commun. Netw. 34(2), 277–294 (2016).  https://doi.org/10.1002/sat.1118 CrossRefGoogle Scholar
  14. 14.
    B. Awoyemi, T. Walingo, F. Takawira, Relay selection cooperative diversity in land mobile satellite systems, in Proceedings of the IEEE AFRICON (2013), pp. 1–6Google Scholar
  15. 15.
    J. Laneman, D. Tse, G. W. Wornell, Cooperative diversity in wireless networks: efficient protocols and outage behavior. IEEE Trans. Inf. Theory 50(12), 3062–3080 (2004)MathSciNetCrossRefGoogle Scholar
  16. 16.
    S. Wang, M. Ge, C. Wang, Efficient resource allocation for cognitive radio networks with cooperative relays. IEEE J. Sel. Areas Commun. 31(11), 2432–2441 (2013)CrossRefGoogle Scholar
  17. 17.
    M. Adian, H. Aghaeinia, Optimal resource allocation for opportunistic spectrum access in multiple-input multiple-output-orthogonal frequency division multiplexing based cooperative cognitive radio networks. IET Signal Process. 7(7), 549–557 (2013)MathSciNetCrossRefGoogle Scholar
  18. 18.
    S. Du, F. Huang, S. Wang, Power allocation for orthogonal frequency division multiplexing-based cognitive radio networks with cooperative relays. IET Commun. 8(6), 921–929 (2014)CrossRefGoogle Scholar
  19. 19.
    M. Pischella, D. Le Ruyet, Cooperative allocation for underlay cognitive radio systems, in Proceedings of the 14th IEEE Workshop on SPAWC (2013), pp. 245–249Google Scholar
  20. 20.
    Y. Rahulamathavan, K. Cumanan, L. Musavian, S. Lambotharan, Optimal subcarrier and bit allocation techniques for cognitive radio networks using integer linear programming, in Proceedings of the 15th IEEE Workshop on SSP (2009), pp. 293–296Google Scholar
  21. 21.
    Y. Rahulamathavan, S. Lambotharan, C. Toker, A. Gershman, Suboptimal recursive optimisation framework for adaptive resource allocation in spectrum-sharing networks. IET Signal Process. 6(1), 27–33 (2012)MathSciNetCrossRefGoogle Scholar

Copyright information

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022

Authors and Affiliations

  1. 1.University of PretoriaPretoriaSouth Africa

Personalised recommendations