Advertisement

Tools for Resource Optimisation in Cognitive Radio Networks

Chapter
  • 11 Downloads

Abstract

The resource allocation problems in cognitive radio networks must be optimally and efficiently solved for practicable cognitive radio network realisation. This Chapter discusses the various optimisation tools, methods and approaches that have been and are being explored and engaged as appropriate, best-suited and/or adaptable for solving the resource allocation problems of cognitive radio networks. In practical designs, each of these tools or methods may be used in isolation, or a combination of tools may be employed in arriving at the most efficient and most realistic solutions to the resource allocation problems for modern cognitive radio networks.

Keywords

Resource optimisation Classical optimisation Heuristics Metaheuristics Game theory Multi-objective optimisation Soft computing-based optimisation Cogntive radio networks 

References

  1. 1.
    B. Awoyemi, B. Maharaj, A. Alfa, Optimal resource allocation solutions for heterogeneous cognitive radio networks. Digit. Commun. Netw. 3(2), 129–139 (2017). http://www.sciencedirect.com/science/article/pii/S2352864816301043 CrossRefGoogle Scholar
  2. 2.
    B.S. Awoyemi, B.T.J. Maharaj, A.S. Alfa, Solving resource allocation problems in cognitive radio networks: a survey. EURASIP J. Wirel. Commun. Netw. 2016(1), 176 (2016). https://doi.org/10.1186/s13638-016-0673-6
  3. 3.
    W.L. Winston, M. Venkataramanan, Introduction to Mathematical Programming, 4th edn. (Thompson Brooks/Cole, Pacific Grove/London, 2003)Google Scholar
  4. 4.
    S. Boyd, L. Vandenberghe, Convex Optimization. ser. Berichte über verteilte Messysteme (Cambridge University Press, Cambridge, 2004). https://books.google.co.za/books?id=mYm0bLd3fcoC
  5. 5.
    G. Zhao, J. Li, K. Lee, J.B. Song, Optimal frequency-time allocation in cognitive radio wireless mesh networks. IETE Techn. Rev. 28(5), 434–444 (2011). http://www.tandfonline.com/doi/abs/10.4103/0256-4602.85976 CrossRefGoogle Scholar
  6. 6.
    A. El Shafie, A. Sultan, T. Khattab, Band allocation for cognitive radios with buffered primary and secondary users, in Proceedings of the IEEE WCNC (2014), pp. 1508–1513Google Scholar
  7. 7.
    F. Wang, W. Wang, Robust beamforming and power control for multiuser cognitive radio network, in Proceedings of the IEEE Conference and Exhibition on Global Telecommunications (GLOBECOM) (2010), pp. 1–5Google Scholar
  8. 8.
    Z.-Q. Luo, W. Yu, An introduction to convex optimization for communications and signal processing. IEEE J. Sel. Areas Commun. 24(8), 1426–1438 (2006)CrossRefGoogle Scholar
  9. 9.
    B.S. Awoyemi, B.T. Maharaj, Mitigating interference in the resource optimisation for heterogeneous cognitive radio networks, in Proceedings of the IEEE 2nd Wireless Africa Conference (WAC) (2019), pp. 1–6Google Scholar
  10. 10.
    S. Wang, M. Ge, C. Wang, Efficient resource allocation for cognitive radio networks with cooperative relays. IEEE J. Sel. Areas Commun. 31(11), 2432–2441 (2013)CrossRefGoogle Scholar
  11. 11.
    S. Du, F. Huang, S. Wang, Power allocation for orthogonal frequency division multiplexing-based cognitive radio networks with cooperative relays. IET Commun. 8(6), 921–929 (2014)CrossRefGoogle Scholar
  12. 12.
    W.-C. Pao, Y.-F. Chen, Adaptive gradient-based methods for adaptive power allocation in OFDM-based cognitive radio networks. IEEE Trans. Veh. Technol. 63(2), 836–848 (2014)CrossRefGoogle Scholar
  13. 13.
    Z. Mao, X. Wang, Efficient optimal and suboptimal radio resource allocation in OFDMA system. IEEE Trans. Wirel. Commun. 7(2), 440–445 (2008)CrossRefGoogle Scholar
  14. 14.
    Y. Rahulamathavan, K. Cumanan, S. Lambotharan, Optimal resource allocation techniques for MIMO-OFDMA based cognitive radio networks using integer linear programming, in Proceedings of the 11th IEEE International Workshop on SPAWC (2010), pp. 1–5Google Scholar
  15. 15.
    M.Z. Bocus, J.P. Coon, N.C. Canagarajah, J.P. McGeehan, S.M.D. Armour, A. Doufexi, Resource allocation for OFDMA-based cognitive radio networks with application to h.264 scalable video transmission. EURASIP J. Wirel. Commun. Netw. 2011(1), 245673 (2011). http://jwcn.eurasipjournals.com/content/2011/1/245673
  16. 16.
    M.-S. Cheon, S. Ahmed, F. Al-Khayyal, A branch-reduce-cut algorithm for the global optimization of probabilistically constrained linear programs. Math. Program. 108(2), 617–634 (2006). http://dx.doi.org/10.1007/s10107-006-0725-5 MathSciNetCrossRefGoogle Scholar
  17. 17.
    C. Shi, Y. Wang, P. Zhang, Joint spectrum sensing and resource allocation for multi-band cognitive radio systems with heterogeneous services, in 2012 IEEE Global Communications Conference (GLOBECOM) (2012), pp. 1180–1185Google Scholar
  18. 18.
    S. Kim, B.G. Lee, D. Park, Energy-per-bit minimized radio resource allocation in heterogeneous networks. IEEE Trans. Wirel. Commun. 13(4), 1862–1873 (2014)CrossRefGoogle Scholar
  19. 19.
    L. Wang, W. Xu, Z. He, J. Lin, Algorithms for optimal resource allocation in heterogeneous cognitive radio networks, in 2009 2nd International Conference on Power Electronics and Intelligent Transportation System (PEITS), vol. 2 (2009), pp. 396–400Google Scholar
  20. 20.
    R. Xie, F. Yu, H. Ji, Dynamic resource allocation for heterogeneous services in cognitive radio networks with imperfect channel sensing. IEEE Trans. Veh. Technol. 61(2), 770–780 (2012)CrossRefGoogle Scholar
  21. 21.
    J. Zhang, Z. Zhang, H. Luo, A. Huang, A column generation approach for spectrum allocation in cognitive wireless mesh network, in Proceedings of the 2008 IEEE Global Telecommunications Conference (2008), pp. 1–5Google Scholar
  22. 22.
    Z. He, S. Mao, S. Kompella, A decomposition approach to quality-driven multiuser video streaming in cellular cognitive radio networks. IEEE Trans. Wirel. Commun. 15(1), 728–739 (2016)CrossRefGoogle Scholar
  23. 23.
    P.L. Vo, D.N.M. Dang, S. Lee, C.S. Hong, Q. Le-Trung, A coalitional game approach for fractional cooperative caching in content-oriented networks. Int. J. Comput. Telecomm. Netw. 77(C), 144–152 (2015). http://dx.doi.org/10.1016/j.comnet.2014.12.005 CrossRefGoogle Scholar
  24. 24.
    M. Adian, H. Aghaeinia, Optimal resource allocation for opportunistic spectrum access in multiple-input multiple-output-orthogonal frequency division multiplexing based cooperative cognitive radio networks. IET Signal Process. 7(7), 549–557 (2013)MathSciNetCrossRefGoogle Scholar
  25. 25.
    L. Zheng, C.W. Tan, Cognitive radio network duality and algorithms for utility maximization. IEEE J. Sel. Areas Commun. 31(3), 500–513 (2013)CrossRefGoogle Scholar
  26. 26.
    F. Chen, W. Xu, Y. Guo, J. Lin, M. Chen, Resource allocation in OFDM-based heterogeneous cognitive radio networks with imperfect spectrum sensing and guaranteed QoS, in 2013 8th International Conference on Communications and Networking in China (CHINACOM) (2013), pp. 46–51Google Scholar
  27. 27.
    P. Li, S. Guo, W. Zhuang, B. Ye, On efficient resource allocation for cognitive and cooperative communications. IEEE J. Sel. Areas Commun. 32(2), 264–273 (2014)CrossRefGoogle Scholar
  28. 28.
    C. Turgu, C. Toker, A low complexity resource allocation algorithm for OFDMA systems, in 2009 IEEE/SP 15th Workshop on Statistical Signal Processing (2009), pp. 689–692Google Scholar
  29. 29.
    Y. Shi, Y. Hou, A distributed optimization algorithm for multi-hop cognitive radio networks, in IEEE INFOCOM 2008 - The 27th Conference on Computer Communications (2008)Google Scholar
  30. 30.
    M. Hasegawa, H. Hirai, K. Nagano, H. Harada, K. Aihara, Optimization for centralized and decentralized cognitive radio networks. Proc. IEEE 102(4), 574–584 (2014)CrossRefGoogle Scholar
  31. 31.
    X. Yu, T. Lv, P. Chang, Y. Li, Enhanced efficient optimal and suboptimal radio resource allocation in OFDMA system, in 2010 6th International Conference on Wireless Communications Networking and Mobile Computing (WiCOM) (2010), pp. 1–4Google Scholar
  32. 32.
    Y. Rahulamathavan, S. Lambotharan, C. Toker, A. Gershman, Suboptimal recursive optimisation framework for adaptive resource allocation in spectrum-sharing networks. IET Signal Process. 6(1), 27–33 (2012)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Y. Rahulamathavan, K. Cumanan, L. Musavian, S. Lambotharan, Optimal subcarrier and bit allocation techniques for cognitive radio networks using integer linear programming, in Proceedings of the 15th IEEE Workshop on SSP (2009), pp. 293–296Google Scholar
  34. 34.
    Y. Rahulamathavan, K. Cumanan, R. Krishna, S. Lambotharan, Adaptive subcarrier and bit allocation techniques for MIMO-OFDMA based uplink cognitive radio networks, in Proceedings of the 1st International Workshop on UKIWCWS (2009), pp. 1–5Google Scholar
  35. 35.
    S. Bashar, Z. Ding, Admission control and resource allocation in a heterogeneous OFDMA wireless network. IEEE Trans. Wirel. Commun. 8(8), 4200–4210 (2009)CrossRefGoogle Scholar
  36. 36.
    W. Guo, X. Huang, Maximizing throughput for overlaid cognitive radio networks, in MILCOM 2009 - 2009 IEEE Military Communications Conference (2009), pp. 1–7Google Scholar
  37. 37.
    P. Mitran, L.B. Le, C. Rosenberg, Queue-aware resource allocation for downlink OFDMA cognitive radio networks. IEEE Trans. Wirel. Commun. 9(10), 3100–3111 (2010)CrossRefGoogle Scholar
  38. 38.
    E. Driouch, W. Ajib, A. Ben Dhaou, A greedy spectrum sharing algorithm for cognitive radio networks, in 2012 International Conference on Computing, Networking and Communications (ICNC) (2012), pp. 1010–1014Google Scholar
  39. 39.
    T. Peng, W. Wang, Q. Lu, W. Wang, Subcarrier allocation based on water-filling level in OFDMA-based cognitive radio networks, in 2007 International Conference on Wireless Communications, Networking and Mobile Computing (2007), 196–199Google Scholar
  40. 40.
    A. Zafar, M.-S. Alouini, Y. Chen, R. Radaydeh, New resource allocation scheme for cognitive relay networks with opportunistic access, in Proceedings of the IEEE ICC (2012), pp. 5603–5607Google Scholar
  41. 41.
    Y. Liu, L. Liu, C. Xu, Spectrum underlay-based water-filling algorithm in cognitive radio networks, in 2011 International Conference on Electric Information and Control Engineering (2011), pp. 2614–2617Google Scholar
  42. 42.
    R. Ujjwal, C. Rai, N. Prakash, Fair adaptive resource allocation algorithm for heterogeneous users in OFDMA system, in 2014 International Conference on Signal Processing and Integrated Networks (SPIN) (2014), pp. 402–406Google Scholar
  43. 43.
    M.G. Adian, H. Aghaeinia, Y. Norouzi, Optimal resource allocation for opportunistic spectrum access in heterogeneous MIMO cognitive radio networks. Trans. Emerg. Telecommun. Technol. 27, 74–83 (2014).  https://doi.org/10.1002/ett.2796 CrossRefGoogle Scholar
  44. 44.
    M.G. Adian, H. Aghaeinia, Optimal resource allocation in heterogeneous MIMO cognitive radio networks. Wirel. Pers. Commun. 76(1), 23–39 (2014). https://doi.org/10.1007/s11277-013-1486-0 CrossRefGoogle Scholar
  45. 45.
    A. Alshamrani, X. Shen, L.-L. Xie, QoS provisioning for heterogeneous services in cooperative cognitive radio networks. IEEE J. Sel. Areas Commun. 29(4), 819–830 (2011)CrossRefGoogle Scholar
  46. 46.
    I. Boussaid, J. Lepagnot, P. Siarry, A survey on optimization metaheuristics. Inf. Sci. 237, 82–117 (2013). Prediction, Control and Diagnosis using Advanced Neural Computations. http://www.sciencedirect.com/science/article/pii/S0020025513001588
  47. 47.
    Y. El Morabit, F. Mrabti, E. Abarkan, Spectrum allocation using genetic algorithm in cognitive radio networks, in 2015 Third International Workshop on RFID And Adaptive Wireless Sensor Networks (RAWSN) (2015), pp. 90–93Google Scholar
  48. 48.
    L. Zhu, Y. Xu, J. Chen, and Z. Li, The design of scheduling algorithm for cognitive radio networks based on genetic algorithm, in 2015 IEEE International Conference on Computational Intelligence & Communication Technology (2015), pp. 459–464Google Scholar
  49. 49.
    E. Meshkova, J. Riihijarvi, A. Achtzehn, P. Mahonen, Exploring simulated annealing and graphical models for optimization in cognitive wireless networks, in GLOBECOM 2009-2009 IEEE Global Telecommunications Conference (2009), pp. 1–8Google Scholar
  50. 50.
    B. Ye, M. Nekovee, A. Pervez, M. Ghavami, TV white space channel allocation with simulated annealing as meta algorithm, in 2012 7th International ICST Conference on Cognitive Radio Oriented Wireless Networks and Communications (CROWNCOM) (2012), pp. 175–179Google Scholar
  51. 51.
    V. Jayaraj, J. Amalraj, S. Hemalatha, An analysis of genetic algorithm and tabu search algorithm for channel optimization in cognitive adhoc networks. Int. J. Comput. Sci. Mob. Comput. 3(7), 60–69 (2014)Google Scholar
  52. 52.
    S. Motiian, M. Aghababaie, H. Soltanian-Zadeh, Particle swarm optimization (PSO) of power allocation in cognitive radio systems with interference constraints, in 2011 4th IEEE International Conference on Broadband Network and Multimedia Technology (2011), pp. 558–562Google Scholar
  53. 53.
    S. Ashrafinia, U. Pareek, M. Naeem, D. Lee, Binary artificial Bee colony for cooperative relay communication in cognitive radio systems, in 2012 IEEE International Conference on Communications (ICC) (2012), pp. 1550–1554Google Scholar
  54. 54.
    R. Meng, Y. Ye, N. gang Xie, Multi-objective optimization design methods based on game theory, in 2010 8th World Congress on Intelligent Control and Automation (2010), pp. 2220–2227Google Scholar
  55. 55.
    H. Xu, B. Li, Efficient resource allocation with flexible channel cooperation in OFDMA cognitive radio networks, in 2010 Proceedings IEEE INFOCOM (2010), pp. 1–9Google Scholar
  56. 56.
    H. Xu, B. Li, Resource allocation with flexible channel cooperation in cognitive radio networks. IEEE Trans. Mobile Comput. 12(5), 957–970 (2013)CrossRefGoogle Scholar
  57. 57.
    R. Xie, F. Yu, H. Ji, Spectrum sharing and resource allocation for energy-efficient heterogeneous cognitive radio networks with femtocells, in 2012 IEEE International Conference on Communications (ICC) (2012), pp. 1661–1665Google Scholar
  58. 58.
    R. Xie, F. Yu, H. Ji, Y. Li, Energy-efficient resource allocation for heterogeneous cognitive radio networks with femtocells. IEEE Trans. Wirel. Commun. 11(11), 3910–3920 (2012)CrossRefGoogle Scholar
  59. 59.
    D. Nguyen, M. Krunz, Heterogeneous spectrum sharing with rate demands in cognitive MIMO networks, in 2013 IEEE Global Communications Conference (GLOBECOM) (2013), pp. 3054–3059Google Scholar
  60. 60.
    M. Venkatesan, A. Kulkarni, Soft computing based learning for cognitive radio. Int. J. Recent Trends Eng. Technol. 10(1), 12 (2014)Google Scholar
  61. 61.
    E. Shakshuki, M. Younas, A. Ahmed, G. Amel, S. Anis, M. Abdellatif, ANT 2012 and MobiWIS 2012 resource allocation for multi-user cognitive radio systems using multi-agent Q-learning. Procedia Comput. Sci. 10 46–53 (2012). http://www.sciencedirect.com/science/article/pii/S1877050912003675 CrossRefGoogle Scholar
  62. 62.
    Y. Huang, J. Wang, H. Jiang, Modeling of learning inference and decision-making engine in cognitive radio, in 2010 Second International Conference on Networks Security, Wireless Communications and Trusted Computing 2, 258–261 (2010)CrossRefGoogle Scholar
  63. 63.
    G.V. Lakhekar, R.G. Roy, A fuzzy neural approach for dynamic spectrum allocation in cognitive radio networks, in 2014 International Conference on Circuits, Power and Computing Technologies [ICCPCT-2014] (2014), pp. 1455–1461Google Scholar

Copyright information

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022

Authors and Affiliations

  1. 1.University of PretoriaPretoriaSouth Africa

Personalised recommendations